

E. De Lucia

on behalf of KLOE2 IT Group

Prototypes Test beam results & Validation of final CGEM detectors Cylindrical GEM Mini-Workshop - LNF October 25

Cylindrical GEM Mini-Workshop - LNF October 25th 2012

The IT with CGEM Technology

The **CGEM** is a *low-mass*, *fully cylindrical* and *dead-zone-free* **GEM** based detector:

The main steps of the R&D project:

- Construction and complete characterization of a full scale CGEM prototype
- tudy the XV strip readout configuration and its operation in magnetic field
- Exaction and characterization of a large area GEM realized with the new single-mask photolitografic technique (KLOE2 IT needs GEM foil as large as 450x700mm²)

Technical Design Report of the Inner Tracker for the KLOE-2 experiment [arXiv:<u>1002.2572]</u>

(1) CGEM prototype: test-beam

Proto0.1: Ø=300mm,L=350mm; 1538 axial strips, 650 μm pitch

Gas: $Ar/CO_2 = 70/30$

Fields: 1.5/2.5/2.5 /4 kV/cm

 V_{GEM} : 390-380-370 =1140V, gain~2·10⁴

FEE: 16-channels GASTONE [NIMA 604 (2009)]

Trigger: 2x8-MDT stations -- External Tracking

Spatial Resolution [NSS Conf. Rec.(2009)] $\sigma(GEM) = \sqrt{(250\mu m)^2 - (140\mu m)^2} \sim 200\mu m$

[mm]

GEM residuals

(2) XV readout and magnetic field

A 10x10 cm² Planar GEM w/650 μ m pitch XV strips has been realized and tested in magnetic field:

- X-view will provide r-φ coordinate in CGEM
- V-view made of pads connected by internal vias and with ~40°stereo angle
- XV crossing will provide z coordinate in CGEM
- readout w/GASTONE

Erika de Lucia -- Cylindrical Gew Wini-Workshop-Linf Octobe.

(2) XV readout and magnetic field

The effect of the magnetic field is *twofold*: a *displacement* (dx) and a *spread* of the charge over the readout plane (effect visible only on the "bending plane")

Ar/CO₂=70/30 and B=0.5 T average Lorentz angle α_L = 8°-9°

(2) XV readout : test beam

- * H4 beam-line at CERN-SPS: 150 GeV pions
- ❖ Goliath Magnet: dipole field up to 1.5T in a ~3x3x1m³
- Semi-permanent setup for RD51 users

Gas: Ar/CO₂ = 70/30

Fields: 1.5 - 3.0 - 3.0 - 5.0 kV/cm

 V_{GEM} : 390-380-370 =1140V,

gain~2·104

FEE: GEMs partially equipped with GASTONE boards

Trigger: 6 scintillators with SiPM (3 upstream, 3 downstream)

External Trackers: 4 planar GEMs w/650 μm pitch XY strips

(2) B-induced displacement

❖In our configuration the magnetic field effect is mainly present on the X-view

- i. Align the setup with B = 0
- ii. Turn on B field
- iii. Track reconstruction using the 4 X-Y GEMs (likewise oriented)
- iv. Measure the displacement on the X-V GEM (reversed wrt the other GEMs)

$$\mathbf{D} = \mathbf{2} \times \mathbf{dx} \rightarrow \tan(\theta_1) = \mathbf{D} / 2\mathbf{r}$$
 ($\mathbf{r} = \text{effective detector thickness})$

(2) B-induced displacement

❖ Distribution of dx = D (measured displacement)/2 as a function of B field The black open squares are from GARFIELD simulation

(2) Spatial resolution: X-view

CGEM r-φ resolution

(2) Spatial resolution: Y coordinate

The Y coordinated is measured from the crossing of X and V views

CGEM z resolution

(2) Efficiency vs B field and Gain

At working point, $V_G = 1140 \text{ Volt}$, $G^2x^10^4$, efficiency drop is negligible for B < 0.5 T

fficiency vs B field

The increase of the magnetic field,

increasing the spread of the charge over

the readout strips (less charge is collected by each single pre-amp channel) results in an efficiency drop, thus requiring for higher gain to efficiently operate the detector.

(3) Large Area XV

- ❖The KLOE-2 Inner Tracker requires GEM foils with an area of 350 x 700 mm² (splicing 3 of them to obtain 1 electrode).
- ❖ This required a change in the GEM manufacturing: the single-mask photolitographic technique The foils are produced by the CERN TE-MPE-EM group

(3) Large Area XV

The detector was flushed with Ar/CO₂ (70/30) and tested in current-mode with a ¹³⁷Cs source (660 keV photons). A 10x10 cm² chamber with double-mask foils was used as reference and normalization of performance

GAIN ~25% lower in single-mask GEM

~20 V difference between the two distributions

NO DISCHARGE OBSERVED DURING MEASUREMENTS

Electrode currents

Test with ¹³⁷Cs gamma source

Erika De Lucia -- Cylindrical GEW Willi-Worksi

13

(3) Large Area XV

The Large area planar prototype was tested at CERN-PS T9, equipped with the final X-V readout strips-pads

• GAS MIXTURE: Ar/CO₂ 70/30

• GAIN: 2·10⁴, 3·10⁴

• Final DAQ+electronics chain test: GASTONE64 + Interface board + General Intermediate Boards (GIB) + Software Interface

- External tracking: 4 planar GEMs, 650 μm pitch X-Y strips
- Trigger: 4 scintillators(2 upstream, 2 downstream)

Inner Tracker Validation Tests

X-ray Test Stand

Cosmic-ray Test Stand

Final Setup for Cosmic-ray Stand

3 XY PGEMs

- 8 Gastone64 Boards
- 2 (GIB+TB)
- TB/FEE Cables

2 Triggering **Scintillators**

3 XY PGEMs

- Amperometer
- 28 HV Cables

CGEM

- 42 Gastone64 Boards
- 6 (GIB+TB) and 1 Crate
- TB/FEE Final Cables

CGEM Ref.

GEMs

- HVCAEN
- Amperometer
- 2 HV Patch Panels
- 39 HV Cables
- 39 HV cards

4 HV boxes

Ref.

GEMs

x axis

z axis

C-GEM

Final Setup for Cosmic-ray Stand

GIB-TB

- Optical Receiver Interface
- Final Crate and Transition Board
- TB/Gastone Cables

FEE

Gastone64

HV

Final HV Cables and Distribution

DAQ

Using both GIB Ethernet Interface and Optical Interface

Software for Reconstruction (I)

Cabling & FEE

GIB-TB Noise Test Software

Mapping Gastone to Strip X/V

Need Position of 1st Strip X/V

CGEM Geometry in KLOE Official Ref.

Software ready ✓

GasIn Position for StripV Orientation

Separate X- and V-view Clustering

Software ready

Cluster Position in Lab. Frame (x,y,z)

Software ready

Expected CGEM Cluster Position from 3XY PGEMs External Tracking

Software ready

CGEM Alignment wrt 3XY PGEMs

Software ready

Software for reconstruction (II)

Cabling & FEE

⇒ Global Mapping, FEE Threshold & Noise Study

Mapping Gastone to Strip X/V

 \Rightarrow Occupancy

CGEM Geometry in KLOE Official Ref.

Separate X- and V-view Clustering

⇒ Cluster Size X/V-view

Cluster Position in Lab. Frame (x,y,z)

Expected CGEM Cluster Position from 3XY External Tracking

⇒ Efficiency, Resolution & Glued Zone Effect

CGEM Alignment wrt 3XY

Results on Final CGEM

Layer1/Layer2/Layer3 X-rays Test

- Layer1, Layer2 and Layer3 tested in current mode with 6 keV photons
- * Two gas mixtures characterized using α particles from ²⁴¹Am source :
 - Ar/CO_2 (70/30) : 2x10⁴ Gain reached
 - Ar/i-C₄H₁₀ (90/10) : same Gain reached with <u>higher stability</u> (#discharges

suppressed) and at <u>lower voltage</u> (Vmax = 3800V → 2800V)

Good gain uniformity found over the surface

Elika De Lucia -- 2012 Nuclear Science Symposium & Medicar imaging

23

Layer 2 Temperature Test

- \bullet DA Φ NE beam pipe achieved temperatures higher than those foreseen (up to 50 °C)
- Temperature tests on Layer2 showed some instability for T > 35-40 °C, due to the mechanical "relaxing" of the GEM electrodes

To cope with this problem:

• A cooling system of the DA Φ NE Interaction Point is foreseen: mock-up tests indicate that the operation temperature of the IP can be kept under 30 °C.

• Introduce a 300 μm thick support grid (**PEEK** from CERN PCB workshop) between

Layer 2/Layer3 Test with 90Sr Source (I)

- ❖ Layer2/3 instrumented with: ✓ Final HV cables and distribution
 - ✓ Final Gastone FEE and Signal cables

Trigger:
2 scintillators
(Top - Bottom

External Tracking
System provided
by three Triple
Planar GEMs
PGEMs
(Top - 2 Bottom)

❖The DAQ System uses the Final custom Global Interface Boards (GIB) and Transition Boards (TB) IEEE TNS 58 (2011) 1544

Layer 2/Layer3 Test with 90Sr Source (II)

- \$ S1-S12 HV Sectors
- ❖ Source Scan positioning ⁹⁰Sr on each HV sector

Unrolled Anode Foil: X-view Strips

Layer 2/Layer3 Test with 90Sr Source (III)

- \$ S1-S12 HV Sectors
- ❖ Source Scan positioning 90Sr on each HV sector

Unrolled Anode Foil: V-view Strips

Source on S1

- V-view Fired Strips
- V-view Strips not illuminated with ⁹⁰Sr

Source on S3

V-view Fired Strips

FEE Boards ->

Layer 2 90Sr Source Scan

HV Network of 3rd GEM foil(I)

- * Correlated noise O(10%) observed on the CGEM (the first time in LHCb-GEMs)
- ❖ Effect explained as cross-talk due to capacitive coupling between G3_bottom and Readout plane: in events with large charge deposit, the current on the common G3_bottom could induce overthreshold signals on neighboring strips/pads (facing G3_bottom), originating Splash Events: Large Hit Multiplicity Events
- ❖ Splash Events are strongly suppressed by the insertion of a **Blocking Capacitor (BC)**: by suitable tuning of the R and C values , the current induced on G3_bottom flows through the BC rather than through detectors.

Layer 3 with BC 90Sr Source Scan

Layer 2 Validation with cosmic-ray muons

Selecting events using External Tracking provided by 3 Planar Triple-GEM

Layer 2 Validation with cosmic-ray muons

Selecting events using External Tracking provided by 3 Planar Triple-GEM

Layer 2 Validation with cosmic-ray muons

Selecting events using External Tracking provided by 3 Planar Triple-GEM

