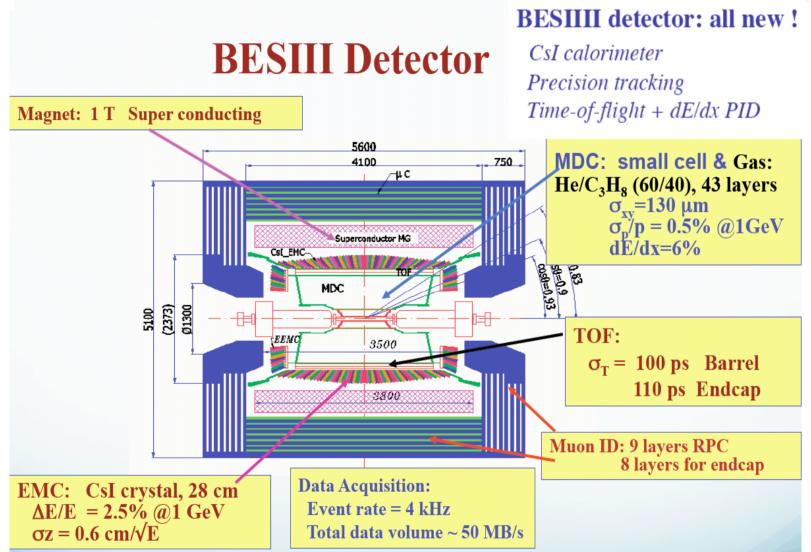


中国科學院為維約昭湖完飾 Institute of High Energy Physics Chinese Academy of Sciences

Requirements for a CGEM IT at BESIII

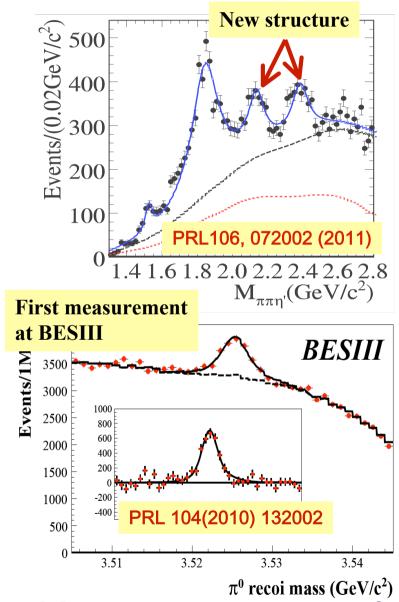
Qun Ouyang


Outline

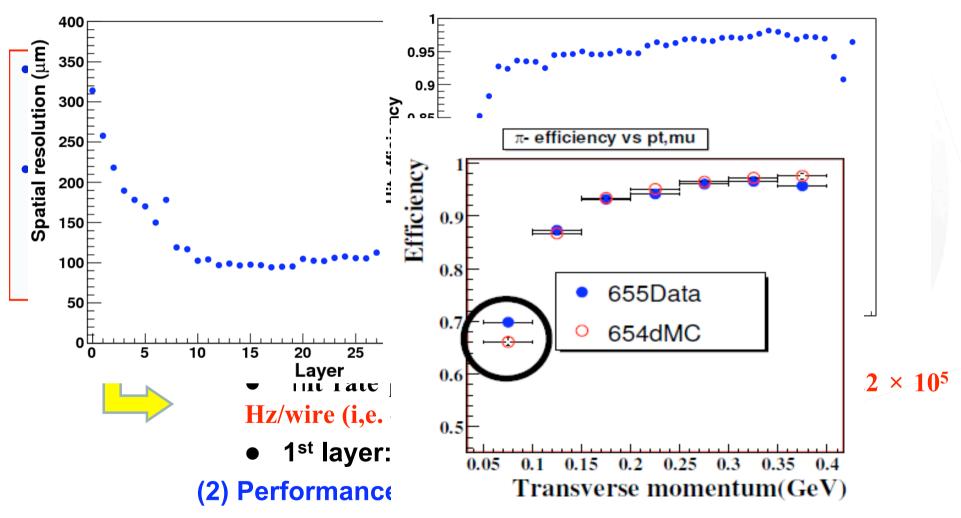
- 1. Status of MDC operation @ BESIII
- 2. Requirements for the inner drift chamber upgrade

Cylindrical GEM Mini-workshop INFN – LNF Aula Seminari, 25 – 26 October, 2012

Status of MDC operation @ BESIII


MDC inner chamber: the first 8 layers, all are stereo wires.

Physics @ BESIII

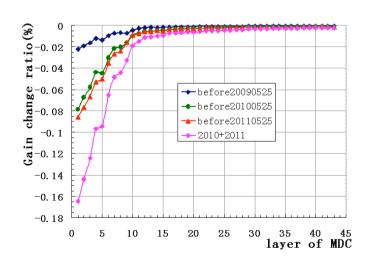

- Light Hadron Spectroscopy (1.2B J/ψ events)
- Charmonium physics(0.5B ψ' events)
- Charm physics (2.9 fb⁻¹ $\psi(3770)$)

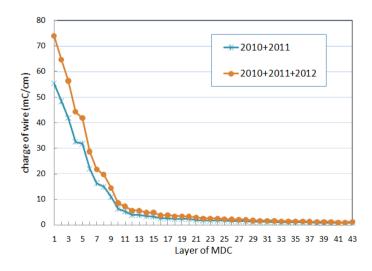
World's largest sample of J/ ψ , ψ (2S) and ψ (3770) (more than 20 physics papers) and still growing

MDC status

- $\sigma_{xy} > 300 \mu m$ (the worst case)
- ε_{cell} ~ 70% (the worst case)

(3) Aging effect




• field wires: Malter effect

- Non-stopped discharge up to some μA/wire, possible large area damage to detector
- Water vapor about 2000ppm @ 22 °C has been added, no Malter effect again. But, long term operation needs investigation.

sense wires

- $\sim 2009 2011$, gain degraded for the 1st 5 layers: 10% 15%
- > The accumulated charge of the sense wire on the first layer is 74mC/cm
 - ≈ the specification of BESIII design for 5 full-year running

Keep the MDC alive

BESIII: data taken for the coming years

■ Ψ': 0.5B → 1B

 $\Psi(3770)$: 2.9 fb⁻¹ \rightarrow 20 fb⁻¹

R scan...

Actions: luminosity increasing

- **♦** Construct a new inner drift chamber (spared)
 - demo prototype for removing process
 - new inner drift chamber →starting from 2013
- **♦** Investigate new technologies

Requirements for the inner drift chamber upgrade

- Rating capability: ~10⁴ Hz/cm²
- Spatial resolution: $\sigma_{xy} \sim 100 \mu m$; $\sigma_z \sim 1 mm$;
- Momentum resolution: $\sigma_{pt}/p_t \sim 0.5\%$ @1GeV;
- Efficiency: $\varepsilon \sim 98\%$
- Material budget: < 1.5% all layers
- Coverage: $93\% 4\pi$
- Operation duration: ~ 5 years

Possible options:

- CGEM: based on KLOE-2 technology, collaboration between Italian and Chinese groups
- Monolithic pixels: CPS developed by IPHC in Strasburg

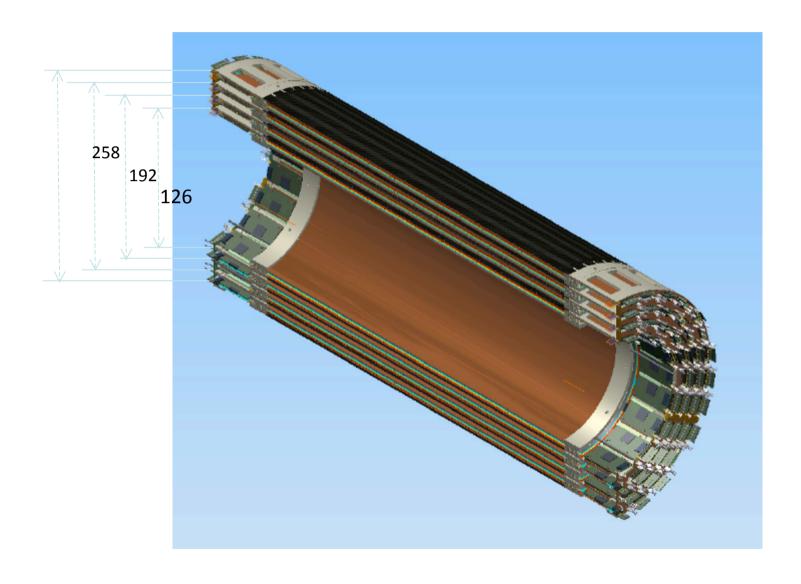
Simulation with TRACKERR

	Intrinsic resolution(μm)	σ _{dr} (μm) 0.1GeV/1GeV	σ _{dz} (μm) 0.1GeV/1GeV	$\sigma_{pt}/p_t(\%)$ 0.1GeV/1GeV	σ _p (MeV) 0.1GeV/1GeV
Inner MDC	130	1330 / 117	2033 / 1017	0.59 / 0.46	0.586 / 4.61
Si(600)	30	1325 / 116	1331 / 124	0.65 / 0.48	0.649 / 4.77
Si(200)	30	926 / 87	929 / 103	0.59 / 0.47	0.589 / 4.72
Si(600)	60	1352 / 140	1359 / 165	0.65 / 0.49	0.649 / 4.90
Si(200)	60	958 / 106	961 / 142	0.59 / 0.48	0.589 / 4.83
CGEM(4L)	120	1335 / 174	2078 / 451	0.59 / 0.51	0.592 / 5.11
CGEM(5L)	120	1341 / 180	2032 / 438	0.59 / 0.51	0.593 / 5.12

*less material budget input the calculation

(4 slides from Rinaldo's presentation)

BESIII GEM possible geometrical parameters


Layer	Int.diam (mm)	Length (mm)	Foils
1	126		1
2	192		2
3	258		2
4	324	870	2

N. strips ~ 20000 (KLOE2 ~ 30000)

Stereo angle $\sim 40^{\circ}$ (like KLOE2)

Pictorial view of IT for BESIII

Toy MC to achieve information on longitudinal resolution

Assuming:

- KLOE2 pitch (650 μm)
- Analog readout (extrapolated from COMPASS results)
- σ_x ~ 650/400 x 330/200 x 50 ~ 130 μm pitch B COMPASS
- * σ_z ~ 370/200 x 130 ~ 250- 300 μ m KLOE2
- Arr s_{GEM} ~ 0.45 % X₀ (like the inner cylinder)
- □ Simulation of Outer Chamber stereo wires and Inner Chamber or CGEM stereo resolutions, including ms

Momentum Resolution

- Momentum resolution:
- The worst scenario (mostly from the outer chamber) L: 70 -> 62 cm $\sigma_{\text{readout}} \propto 1 / L^2 , \sigma_{\text{ms}} \propto 1 / \sqrt{L}$ $(\sigma_{\text{p}} / P)_{\text{GFM}} \sim (\sigma_{\text{p}} / P)_{\text{Inner}} \times (1.07 -> 1.25 \text{ depending on P}_{\text{t}})$
- θ_{ms}x L_{GEM} < σ_x @ P > 0.7 GeV
 ms should not affect extrapolation from the Outer Chamber
 A toy MC is under development

However a full detailed simulation is needed to settle all that

Some preliminary results will be presented during the BESIII meeting next month.

Summary

- MDC @ BESIII is facing aging problem;
- Time to start new technology R&D;
- CGEM prototype study has been initialized.

Thank you!