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KLOE apparatus upgrade requirements
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IT Proto 1.0 (constructed in 2007-2008)

 Triple-GEM with 3,2,2,2 gap thickness

 150 mm radius (Layer 1) x  354 mm
active length

 Electrodes obtained splicing 3 foils
(314x354 mm2)

One-dimensional readout

 650 µm pitch (only along rϕ)

 Anode readout with 1538 strips-pads

128 ch equipped with GASTONE16

Drift chamber

Inner Tracker

 Improve vertex reconstruction of KS
and η decays of a factor 3

  2.0% X0 total radiation length

 σrϕ∼200 σz ∼500 µm spatial resolution

5 kHz/cm2 rate capability

4 tracking layers

 from  260 to 460 mm in diameter

700 mm active length

Technology: Cylindrical-GEM

3



Inner Tracker Purpose and Requirements
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 Tracking device (NO charge / NO time measurements)

 Low gas gain device
• High sensitivity head amplifier (few fC)

 High density readout (pitch ∼ 650µm / ∼30k RO channels)
• Low power FE

 Most internal layer strip rate < 30 kHz
• DC base-line restorer was avoided

 Stereo strips RO
• Cin spread (0 pF ÷ 150 pF)

 Very light device (kapton + support structure)
• Detector + readout hard to integrate

 IT strip is “short” i.e. Propagation delay ∼ signal rise time 
– Strip behaves not as a transmission line  no need for line termination
– In practice no space for termination readout on both sides of detector



Signal production: in the drift region
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Ionization produced by a traversing charged particle produces
electron/ion pairs. The number of primary electrons is NP.

High energy ejected electrons can produce further ionization
such that the total number of electrons NT is greater (about a
factor 3÷4) than NP.

The electrons drift in the electric fields towards the GEM foils
whilst the ions recombine at the cathode.

Typical numbers for NT are a few tens of electrons following a
Landau distribution.

Compare that to ∼220000 e− produced in 300 µm of Si

Gas NP/cm NT/cm %

Ar 25 97 70

CO2 35 100 30

Total 28 83

NT ≅ 25 e- /3 mm



Signal formation
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• The strips outside of the main charge cloud show bipolar response due to
induction process. Total charge on these strips integrates to zero.

• The width of the charge cloud collected on the anode for localized events or
cluster size, depends on:

– Detector geometry
– Gas filling
– Fields in the transfer regions
– Time constants of the amplifiers

Charge cluster collected with 50 ns shaping time with readout strips 200 µm apart

FWHM = 400 µm

55Fe – 5.9 KeV 
Bressan et.al. (1999)



Signal duration - example

7

Drift velocity 
Drift region: 7 cm/µs @ 3kV/cm  42 ns
Induction region:  13 ns
Total collection time ∼ 80 ns
No ion tails due to screening effect of foils
and clusters confinement in the holes

Conversion &

(Ziegler M., 2002)



GEM Spark discharge probability
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Gain and discharge probability on irradiation with MIP
Bi-Conical holes (80-50 µm) double mask GEM planes
Ziegler et.al. NIM A 471(2001) 260-263

Gain and discharge probability on irradiation with alpha particles.
Conical holes (90-45 µm) single mask GEM planes
G. Croci – RD51 WG2 Meeting December 10° 2008
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Conical holes (70-60 µm) single mask GEM planes



… the number in summary
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 Ar/CO2=70/30
 G=104 with
 10 primary clusters/3 mm
 Clsize=2.5 electrons/primary_cluster
 Vdrift= 7cm/µs    14ns/mm  42ns/3mm

 Charge_mip_strip ~  40fC/4 = 10 fC

 Charge_mip = 10x2.5x1.6.10-19x104 = 40x10-15 = 40 fC

The initial signal charge needs further amplification
The strips geometry and density are important as well
The shaping time should be calibrated on type of application



…in conclusion
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KLOE readout requirements
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 Serial RO protocol (to reduce output channels)
• Copper/Optical Link

 High modularity (64/128 channels)

 Switched signals only while reading data (to avoid internal X-talk)  no
permanent clock running

 Asynchronous Trigger

 Asynchronous RESET

 OR output
• Self-trigger capability for self triggering (NOT REQUIRED for IT readout)

≈200 ns
BX

Lev1
Dead Time

≈2 µs

KLOE DAQ timing
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Which kind of electronics?
The main constraint is due to the so big span in the
capacitive load of each input channel (1pF < Cdet < 180pF)

We need to have:
good sensitivity for the expected charge
stability
uniformity
linearity

 we adopt charge pre-amp scheme as input stage:
i.Low Cdet sensitivity
ii.Resistive dominant term in input impedance up to frequencies close to
fC

BUT:
i.More component s required
ii.Greater power consumption than other considered configuration
iii.Cdet  matching required for optimum S/N ratio big size MOS devices
iv.Shaping circuit required



A new topology for the anodic readout
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 X pitch
650 µm  V

pit
ch

65
0
µm

40°
1000
µm

A 2-D readout structure used for the first time (2007) to extract 
signal information including a diffused and separated 
ground plane for signal reference



New 2-D anodic readout structure
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X strip

V strip

Multilayer Kapton circuit
realized at CERN

X pitch 650µm → X res 190µm

V pitch 650µm → Y res 350µm

2-dimensional readout with
XV strips on the same plane



Material composition cross-section
Polyammide 12,5 (um) Coverlay

Adhesive 12,5

1 Copper 5 Double-Sided Copper-Clad

Polyimide 50

2 Copper 5

Epoxy 25 Bond ply

Polyimide 25

Epoxy 25

Epoxy 25 Bond ply

Polyimide 25

Epoxy 25

Polyimide 50 Double-Sided Copper-Clad

3 Copper 5

Adhesive 12,5 Coverlay

Polyammide 12,5



GASTONE16
Analog Section - 3 basic blocks
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1. a charge preamplifier to integrate the input strip current into a
voltage. Internal test pulsing capability (∼10 fC)

2. A semi-gaussian shaper (CR-RC) circuit providing noise filtering
3. A leading-edge discriminator
4. AC-coupled

 Low-noise and low-power mixed analog-digital
ASIC designed to satisfy IT requirements

0.35 µm CMOS



GASTONE16
Digital Section - 4 basic blocks
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Discr 1 monostable

max 1 µs width

1

Discr 64 monostable

S
E
R
I
A
L
I
Z
E
R

Data (RO)

Trigger
Ck(RO)

2

DATA RO SECTION

Data Out
Data In

Reset
Ck (SC)

CONTROLLER

DAC Vth x 4

DAC Monost.

ADC Vth x 4

ADC Monost.

3

Pulse Odd

4

Pulse Even
Mask

CONTROL SECTION



Readout device parameters
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Header
(8+2 bits)

Trigger
Counter(5bits)

Chip ID
(9 Bits) Data (64 Bit) End Byte

(8 zeros)

1 bit / channel

KLOE DAQ timing
“bunched” beam structure

• < 2 µs (data RO)
• 200 ns (input signal spread – worst case)
• 96 bits to be read in < 2 µs  (acquisition rate 100 Mbps)

1. High modularity (64 channels)
2. Serial RO protocol (to reduce power consumption and cables
3. RO clock only after trigger arrival (to avoid internal x-talk)
4. OR output (self-trigger capability)



GASTONE16 Front-End Board (1’st release)
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“Slow Control” section implemented to:
– Set threshold value (8 bit DAC)
– Set the monostable pulse width
– Enable external pulse system
– Enable internal/External pulsing system
– Read back threshold values (8 bit ADC)
– Read back the value for monostable width

setting
– Enable channel readout through an internal

mask register

Main features:
• 2 chips/board (16 ch up / 16 ch down)
• One serial readout line per chip
• 10 LVDS communication lines/board
• Clock readout signal (50 MHz)
• One mask register for dead channels
• OR output for 16 channels for self-triggering
• HW ID for each chip
• 4 DAC + 4 ADC (8 bits) to set thresholds (one

for 16 channel)
• 1 DAC (8 bits) + 1 ADC (8 bits) to set

monostable output width
• Default threshold value (∼fC) set at “power-

on”

Dimensions: 30x95 mm2

Gastone 16 chs

Input protection
circuit

GEM strip inputs



Testing procedures
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1. Charge sensitivity  Linearity
2. Uniformity among channels
3. Time-walk
4. ENC
5. Cross-talk
6. Threshold calibration curve
7. Pulse-width calibration curve (vs. Vmon voltage)
8. Functional test of digital section:

a) SPI interface (write/read internal registers, DACs and ADCs)
b) Data readout

Measurements:



Prototype testing GASTONE16
1’st release (I)
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Prototype testing GASTONE16
1’st release (II)
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time walk soglia 161,15 mV

soglia 241,7 mV

soglia 322,3 mV

Different threshold values:
• Th1 = 6.45 fC
• Th2 = 9.67 fC
• Th3 = 12.9 fC

ENC sim    = 395 e− + 51 e− /pF
ENC meas = 974 e− + 59 e− /pF 

(time jitter)

(time walk)



Protection network against discharge
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Input protection &
strip reference network

10 Ω 10 nF

GASTONE16 1’st release (95x30 mm2)

1. Wasting space on FEB
2. strip referred to GND  AC-coupling

1. Input protection network inside chip
2. Strip DC-coupled and referred to in-MOS (∼500 mV )

GASTONE16 2’nd release contains integrated in the
input pads a protection network against the (remote)
discharge probability of the triple GEM (« 10‰)



Protection Network Lab Testing
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Provoked discharge voltage values related to the foreseen induction thicknesses…and
something more (1, 2, …mm) by means an external RC network



3’rd release features summary
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 Noise measurements in the final setup (i.e. boards connected to the layer 0
readout strips) show a value of 800 e- + 40 e-/pF = 1.088 fC (150 pF)  1.5 fC will
allow good event selection.

GASTONE parameters

Input impedance 400 Ω

Cdet range 0 – 150 pF

Number of channels 64

I/O Differential and serial

Baseline restorer No

Total Gain sensitivity 22 mV/fC (Cdet  = 0 pF)

Peaking time 80 ns÷150 ns (CD=0 ÷100 pF)

Measured X-talk < 1%

ENC (rms) measured on detector 800 e- + 40 e-/pF

Threshold sensing/setting 8 bits ADC/DAC  (16 chs modularity)

Input protection circuitry Integrated in each input channel

Internal trigger generation For test purpose

Programming test pulse capability Qinj = 0 – 50 fC

Power consumption 7.5 mW/Ch

GASTONE64 layout of 
final release



Front-end board (120 channels)
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Dimensions: 62x40 mm2

Input connector (GEM)
• 120 strips
• GND

    I/O connector
• Power supplies
• SPI slow control bus
• Readout bus 

About 700 chips plus 340 VFEB including
spares has been built to fully instrument
the final detector



Test Bench for FE validation
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• Mother Board controlled through Ethernet
• 2 “piggy back” boards for chip test only and with FE-Board

Piggy-socket board Piggy-FEB board



Analog Section – Preamp + Shaper
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mV

fC

Shaper output vs Qin

GASTONE64 final release



Analog Section – Preamp + Shaper
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Measured xtalk ~ 1%

mV/fC

pF

Gain vs Cin

max 6%

GASTONE64 final release



Analog Section – Preamp + Shaper
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Shaper output (Qin = 10 fC) 

Cin = 10 pF Cin = 50 pF

50 mV/div   100 ns/div 50 mV/div   100 ns/div



Analog Section – Max freq
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Shaper output

Monostable output (NIM)

• fmax = 1 MHz
• pile-up effect: baseline shift = -10 mV  -0.5 fC

ΔV = 10 mV

Qin = 10 fC
Vth =   3 fC



Digital Section – LVDS driver
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• Common mode:  1.2 V
• Voltage swing:  400 mV
• Differential signal voltage swing:  800 mV
• Capable to drive long lines (20 m)
• Power consumption: 12 mW

LVDS signals

Differential signal



FEE Integration
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• Three layers (1,2 and 3) out of four ready and working
• The fourth is waiting for raw materials coming from CERN
• The layer 4 will be ready (we hope) for the end of the year
• Afterward the sliding procedure of all layers the full detector

will be ready for validation w. muon test



GASTONE32 with analog readout
(the story continues)
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• Developed for R&D of a detector for medical applications
• a daughter version including only analog channel has been designed
• It includes only 32 input channels and corresponding output channels
• It produces an amplified and shaped output of the detector input
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GASTONE32 Board
•GASTONE 32  Board ready to be mounted on a
small planar 3-GEM with resistive 2x2 mm2 pad
readout; total  # pad 8x8=64
total area of 16.5x16.5 mm2  (charge dispersion
readout method)

•A total of 128 channels are to be fully instrumented
to readout a total area of 272 mm2

• The analog output will be read out through a “Peak
Sensing” ADC for charge center of gravity analysis

•It’s a project to be further developed for what
concern the readout architecture i.e.:
i.Do we need to develop an ADC per channel or for a
group of channels?
ii.…and something more



GASTONE32: some test results
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Qin = 10 fC

Qin = 20 fC

Qin = 50 fC

Qin = 100 fC



New design for rad-hard applications(?)
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• What about rad-hard design
• This implies the choice of well evaluated design strategy and technology
• A big effort has been produced in the past on this item thanks to LHC

experiments by Bari Group
• Bari Group was participating in the past to many radiation hardness

campaign on different technologies (1)

• In parallel it is involved in collaboration with CERN to another rad-hard
project

• It is well acquainted on rad-hard technology available nowadays by
European brokers

(1)
a. L. Gonnella et.al. “Total Ionizing Dose effects in 130-nm commercial CMOS technologies for

HEP experiments”. NIM A 582 (2007) 750-754
b. A. Gabrielli et.al. “Design and submission of rad-tolerant circuits for future front-end

electronics at S-LHC



Conclusions
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• The development of GASTONE64 has proceeded hand in
hand with that one of the readout plane

•The project has required a period of time of about 4 years to
reach the final design passing through three releases

•GASTONE64 is a mature project ready to take real data

•GASTONE32 should be revised to satisfy new requirements
(analog readout, rad-hardness, etc.) and t.w. some new anodic
readout strategy (50 µm spatial resolution is feasible)

•Very advanced European VLSI technology complying the
previous requirements are available to our Community
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SPARE SLIDES
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Spatial resolution
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• How to improve spatial resolution without to increase significantly
the electronic channels number?

• Analog readout with “centre of gravity” method
• New anodic readout by using “charge dispersion” method with

resistive anode
• Or both?



Charge dispersion method
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• Starting from the so called “Telegraph equation”  for a resistive surface

• the charge density function is given by

• It is function of time

• Its shape depends on the pad geometry
• …on the location of pad readout wrt the initial charge
• …and the RC time constant of the system
• The signal on the readout strip can be computed by:

– integrating the charge density function
– Cluster dimensions
– Signal rise time
– Rise and fall time of the readout electronics



Charge collection time
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≈200 ns
BX

Lev1

Dead Time

≈2 µs

Typical case

≈ 70 ns spread

Worse case

≈  200 ns spread

Charge Collection Time (typical case)
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Qmax = 10 - 30 fC

≈ 60 ns collection time

≈ 200 ns collection time

≈2.2 µs



Which kind of elctronics ?

A. Ranieri 45Estrarre dal file: Felici GM 2006 (Kloe Future)



GEM biasing
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Parameter Value
ED 1.0 kV/cm
ΔVGem1 390 V
ET1 3.0 kV
ΔVGem2 380 V
ET2 3.5 kV
ΔVGem3 370 V
EI 6.5 kV



device block diagram - 3
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AC couplingAC coupling

The AC coupling is possible because the (relatively) low rate/channel.
Moreover it

• restricts the matching problems to the differential discriminator
• improves reliability against low frequency drifts
• improves the device PSRR in low frequency range

Analog blocksAnalog blocks

Three basic blocks
• a charge preamplifier to integrate the input strip current into a voltage
• a shaper circuit providing noise filtering and semi-gaussian shaping
• a discriminator designed in fully differential mode (together with the AC
coupling it helps  in reducing  the channel to channel offset variations)
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Detector  - FE Integration: test at PS T9 beam

detectorselectronics rack beam line: 10 GeV pion
beam

128 ch w GASTONE (0.5M evts)

drift tubes in streamer mode for tracking

Test beam pictures
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Detector  - FE Integration

σ(global)2 = σ(GEM)2
 + σ(tracker)2

σ(GEM)2 = 250µm2 – 140µm2 ≅ 200µm2

GEM residuals with respect  to the
track reconstructed by the drift tubes
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GASTONE

Test beam results
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