Cylindurical detectors

Ruí De Oliveira
Frascatij 10/2012

OUITLINE

- GEM

- Equipments
- Production capabilities
- Read out boandes
- Different options and limitations
- Kloe
- NS2

GEMI Foil

Present size $1.2 \mathrm{~m} \times 0.5 \mathrm{~m}$ (active area)
Future max size 2 mx 0.5 m
Std pattern 140um pitch/70um holes

GEM double mask Vs GEM single Mask

- Base material : Polyimide 50um + 5um on both sides
- Polyimide : Apical NP from company Kaneka (Japan)
- Supplier of the copper clad material : Nippon Mining (Japan)
- Double mask
- Same base material
- Hole patterning in Cu
- Polyimide etch
- Bottom electro etch
- Second Polyimide Etch
- Limited to $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ due to
- Mask precision and alignment
-Single mask

\square

- Limited to $2 \mathrm{~m} \times 60 \mathrm{~cm}$ due to
- Base material
- Equipment

GEMI Double mask V/s GEMI

 stingle Mask

- Similar patterns , similar behavior, same material.
- Angles can be adjusted in both structure (Typ value : 70um copper hole, 50um polyimide hole)

Steeper angles gives lower gain but also lower charging up

GEM double mask exanoles

COMPASS (CERN)

TOTEM (CERN)

LHCb-Muon trigger (CERI

- Present double mask production quantities : around 500 GEMs/ year in average
- Max size: $40 \mathrm{~cm} \times 40 \mathrm{~cm}$

GEM Single mask examples

- CMS RPC possible upgrade
-GEM 1.1m x 500mm

- KLOE - Cylindrical 3 GEM Detector
-GEM $800 \mathrm{~mm} \times 500 \mathrm{~mm}$
-Read-out 2D : 800 mmx 500 mm

Kloe GEM

Foil : $1 \mathrm{~m} \times 0.6$
Active area 800×500

Problems durine production of Kloe GEMs

1/ cutting problem \rightarrow solved by chemical precutting around edges
2/ plated holes \rightarrow solved by multiplying the number of holes
3/ Packing problems due to dust

- we will need a dedicated box for transportation

OUITLINE

- GEM
- Lange size process

- Production carpabilities
- Read out boandes
- Different options and limitations
-Kloe
- NS2

- Exposure machine $1.4 \mathrm{~m} \times 2.2 \mathrm{~m}$
-Laminator : 1.2 m width
- Oven : 2.4m x 1.4m
- Continuous Kapton etching : 0.6 m wide
- Electro chemical etching : $2 \mathrm{~m} \times 0.6$

OUITLINE

- GEM
- Lange size process
- Equiponents

- Read out boarde
- Different options and limitations
- Kloe
- NS2

Expected production rate

- Present production rate : $100 \mathrm{Gem} /$ year (1.2 mx 0.6 m)
- Expected rate for 2013 : 250 GEM/Year/technician
- Man power :
- 2 technicians in 2012
$\bullet 4$ technicians in 2013 (training phase now)

OUITLINE

- GEM
- Lange size process
- Equipmants
- Production capabilities
- Read out boards

-Kloe
- NS2

2D etched (Compass type)

Pos:
Neg:
Fine pitch
CERN single source
Easy control
Possibility to minimize errors
Lower mass ,less metal
limited to $500 \mathrm{~mm} \times 700 \mathrm{~mm}$ now $\rightarrow 2 \mathrm{~m} \times 500 \mathrm{~mm}$ soon
Substrate gluing limited to $1.2 \mathrm{~m} \times 0.6 \mathrm{~m}$

Read-out woith Vias

2 Directions

3 Directions "3D"
Pixel

Pos:
3 D and Pixel possible
Flat electrode

Neg:
CERN single source for large size
Laser drilling $0.5 \mathrm{~m} \times 0.6 \mathrm{~m}$, chemical $2 \mathrm{~m} \times 0.5 \mathrm{~m}$
High number of plated vias
Long electrical test
Lower pitch
More metal
More production steps

limited to $500 \mathrm{~mm} \times 700 \mathrm{~mm}$ now $\rightarrow 1.6 \mathrm{~m} \times 500 \mathrm{~mm}$ max
Substrate gluing limited to $1.2 \mathrm{~m} \times 0.6 \mathrm{~m}$

2D process

Polyimide 50 um

Image the micro-vias

Laser or Chemical drilling

Metallization

Photolithography

Glue to substrate

2.D examnole

Readout active area

2D readout board glued on low intrinsic radiation Plexiglas substrate

3D example

Readout for TPC with
backside connection
30 cm diameter

Pixel exampole

1024 pads on a diameter of 35 mm

Close-up view Pad: 1 mm
Pitch : 1.05 mm

Smallest pad produced : $250 \mu \mathrm{~m}$
Pitch: $300 \mu \mathrm{~m}$

OUTTLINE

- GEM
- Large size process
- Equipments
- Production capabilities
- Read out boards
- Different options and limitations
rive
- NS

Problems during production

1/ Plating of large quantity micro via
2/ Dimensional accuracy
3/ Electrical test longer than expected

OUTTLINE

- GEM
- Large size process
- Equipments
- Production capabilities
- Read out boards
- Different options and limitations
- Sloe

$$
\underline{1} \sqrt{1} \underline{S}^{\prime} \underline{y}
$$

Gem Stack

Resistor are directly soldered On the GEM before final clean

Drifit boand

Gem stack introduction

Stretch

Visual stretching + Voltage breakdown measurement between GEMs

Cleaning

Closing with reard-out

Gain VS sector position

Dust problem

After sand blast
Frame after machining

After PU coating

Dust problem

A lot of dust was released during the screwing in FR4 frame We have replaced FR4 by PEEK

PEEK is one of the best polymer in tern of:
-radiation tolerance
-mechanical properties
-out gassing
-chemical resistance

Inprovennents for the next production

- Outer Frame in one piece and screwed, the gluing needs too much care and time..
- Inner spacer in 4 pieces not 8 (even if they are longer).
- Replace the springs for GEM connection
- Modify the play in the fixing holes of the read-out board to avoid any stress in order to keep it flat. (the 2 last detectors are already modified in this way).

NS2 detector adrountages:

- No dead zone in active area
- Assembly time
- $1 / 2$ hour for $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ detector (1 technician)
-2 hours for $1 \mathrm{~m} \times 0.6 \mathrm{~m}$ detector (1 technician)
- No gluing , no soldering (still 1 gluing to be removed)
- Re opening possible
- GEM exchange possible \rightarrow tested OK
- Full detector Re-cleaning possible \rightarrow tested OK
- No intermediate test needed
- final test :High voltage test of GEMs and between GEMs
$\bullet \rightarrow$ send for calibration and endurance tests
- Upgradable.
- The read-out board can be upgraded at any time
- Production can start before final electronic design

Thank you

