

Gravitational Wave detection: ... from 1st generation interferometers to ET

Michele Punturo INFN Perugia and EGO

) INFN Istituto Nazionale di Fisica Nucleare

INFN-PG Workshop 2012

INFN-PG Workshop 2012

Talk Outline

- Introduction to the Gravitational Wave (GW) search
- Gravitational wave interferometric detectors
 - Working principles
 - Current status
 - Advanced detectors
 - 3rd generation of gravitational wave observatories
 - The Einstein Telescope

General Relativity and GW

- GW are predicted by the Einstein General Relativity (GR) theory
 - Formal treatment of the GW in GR is beyond the scope of this talk and only the aspects important for the GW detection will be considered
- Einstein field equation links the source of the space-time deformation ($T_{\mu\nu}$ Energy-impulse tensor)
- Far from the big masses Einstein field equation admits (linear approximation) wave solution (small perturbation of the background geometry)

$$T_{\mu\nu} = -\frac{c^4}{8\pi G} G_{\mu\nu}$$

to the effect of the deformation ($G_{\mu\nu}$ the deformation tensor)

$$\mathbf{g} = \eta + \mathbf{h} \operatorname{with} \left| h_{\mu\nu} \right| \ll 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) h_{\mu\nu} = 0$$

Gravitational Waves

- Gravitational waves are a perturbation of the space-time geometry
- They present two polarizations

 $\mathbf{h}(z,t) = e^{i(\omega t - kz)} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

 The effect of GWs on a mass distribution is the modulation of the reciprocal distance of the masses

Quantify the "deformation"

The amplitude of the space-time deformation is:

$$h_{\mu\nu} = \frac{2G}{c^4} \cdot \frac{1}{r} \ddot{Q}_{\mu\nu}$$

Where $Q_{\mu\nu}$ is the quadrupolar moment of the GW source

 Let suppose to have a system of 2 coalescing neutron stars, located in the Virgo cluster (r~10Mpc):

and r is the distance between the detector and the GW source

$$h \approx 10^{-21} - 10^{-22}$$

$$\delta L \approx \frac{h}{2} \cdot L_0 \\ L_0 \approx 10^3 m$$
 $\Rightarrow \delta L \approx 10^{-18} - 10^{-19} m$

Extremely challenging for the detectors

GW interferometric initial detectors

A network of detectors has been active in the World until few years ago

GEO, Hannover, 600 m

VIRGO

- □ LAPP Annecy
- NIKHEF Amsterdam
- RMKI Budapest
- □ INFN Firenze-Urbino
- □ INFN Genova
- □ INFN LNF

- MA Lyon
- INFN Napoli
- OCA Nice
- LAL Orsay
- APC Paris

LKB - Paris

- □ INFN Padova-Trento
- INFN Perugia
- INFN Pisa
- INFN Roma 1
 - □ INFN Roma 2
 - POLGRAV Warsaw

GW interferometric initial detectors

A network of detectors has been active in the World until few years ago

GW interferometric initial detectors

A network of detectors has been active in the World until few years ago

Working principle The quadrupolar nature of the GW makes the Michelson interferometer a "natural" GW detector

Real life: complex machine

Detector sensitivity The faint space-time deformation measurement must compete with a series of noise sources that are spoiling the detector

Detector sensitivity The faint space-time deformation measurement must compete with a series of noise sources that are spoiling the detector

Detector sensitivity The faint space-time deformation measurement must compete with a series of noise sources that are spoiling the detector

Noise budget: real life

GW interferometer past evolution

• Evolution of the GW detectors (Virgo example):

GW interferometer past evolution

2008

Evolution of the GW

THE ASTROPHYSICAL JOURNAL, 713:671-685, 2010 April 10 c) 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/713/1/671

RUN 5 LIGO DATA

2003

GW sources: BS

- Binary systems of massive and compact stellar bodies:
 NS-NS, NS-BH, BH-BH
- Source of crucial interest:
 - We are able to model (roughly) the signal using the (post) Newtonian physics

Ζ

BH-BH

Network of GW detectors

 The search for GW signal emitted by a binary system (of neutron star) asks for a network of (distant) detectors

schutz

GW sources: BS/ z

Binary systems of massive and compact stellar bodies:

• NS-NS, NS-BH, BH-BH

1ST GENERATION INTERFEROMETERS COULD DETECT A NS-NS COALESCENCE AS FAR AS VIRGO CLUSTER (15 MPc)

10 million ly

But, upper limit physics explored! (PRD 85, 082002 – 2012, Nature 460, 990-994 . 2009)

BNS	NSBH	BBH
1.35/1.35	1.35/5.0	5.0/5.0
40	80	90
1.3×10^{-4}	3.1×10^{-5}	$6.4 imes 10^{-6}$
•••	3.6×10^{-5}	$7.4 imes 10^{-6}$
	BNS 1.35/1.35 40 1.3×10^{-4} 	BNS NSBH $1.35/1.35$ $1.35/5.0$ 40 80 1.3×10^{-4} 3.1×10^{-5} 3.6×10^{-5}

GW source: Isolated NS

 Not-axisymmetric rotating neutron stars (pulsars) are expected to emit GW at frequency double of the spinning one

$$h \approx \frac{G}{rc^4} \varepsilon \cdot I_{zz} \cdot \Omega^2$$

$$I_{zz} \approx 10^{38} kg \cdot m^2$$
$$\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

- The periodicity of the signal allows to increase the SNR integrating for a long time
 - But Doppler effect correction needed because of the Earth motion determines a computational obstacle to a full blind search
- Detection of GW from a NS gives info on the internal structure of the star (ε limit is related to the superfluid/strange matter nature of the star, to the magnetic field, ...)

GW sources: GRB

- Gamma ray bursts are subdivided in 2 classes:
 - Long (>2s duration): SNe generation mechanism
 - Short (<2s): BNS coalescence mechanism → GW

B.P. Abbot (LSC and Virgo coll), Astr. Jour. 715 (2010), 1438

- A series (137) of GRB occurred during the LIGO-S5/Virgo-VSR1 run
- No detection occurred, but lower limit for the distance of each GRB event 28

GW interferometer present evolution

• Evolution of the GW detectors (Virgo example):

Advanced detectors

 The upgrade to the advanced phase (2nd generation) is just started. The detectors should be back in commissioning in 2014

LIGO

 Advanced are promising roughly a factor 10 in sensitivity improvement:

Credit: R.Powell, B.Berger This allows a detection distance for coalescing BNS of about 130-200Mpc **INFN-PG Workshop 2012**

Advanced detectors: BNS detection rates

- The detection rate follows the sight distance with a roughly cubic law:
 - A BNS detection rate of few tens per year with a limited SNR: detection is assured

IFO	Source ^a	$\dot{N}_{\rm low}~{\rm yr}^{-1}$	$\dot{N}_{\rm re}~{\rm yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			<0.001 ^b	0.01 ^c
	IMBH-IMBH			10 ^{-4d}	10 ^{-3e}
	NS-NS	0.4	40	400	1000
Advanced	NS-BH	0.2	10	300	
	BH–BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300 ^c
	IMBH-IMBH			0.1 ^d	1 ^e

LIGO

Advanced detectors: pulsars

Better sensitivities, especially at low frequency, will allow to beat the spin-down limit for many pulsars

INFN-PG Workshop 2012

New players !

KAGRA

 A 2.5 generation detector, under construction in Japan, implementing new (3G) underground and cryogenic technologies in a 3km long site in Kamioka (2018)

New players

KAGRA

- A 2.5 generation detector, under construction in Japan, implementing new (3G) underground and cryogenic technologies in a 3km long site in Kamioka (2018)
- LIGO-India
 - The move of aLIGO-H2 to India to improve pointing capabilities of the GW detector network (2018-2020) is almost decided

AIGO

Attempt to build a GW interferometer in Australia

GW Astronomy?

- Is our target the precision Astronomy with GW detectors?
 - Let learn from who is doing astronomy now:

"Electro-magnetic" Telescopes

E.M. Astronomy

- Current e.m. telescopes are mapping almost the entire Universe
- Keywords:
 - Map it in all the accessible wavelengths
 - See as far as possible
 - Galaxy UDFy-38135539 in Ultra Deep Field image (Hubble Telescope) ~ 13.1 Gly

M. Trenti, Nature 467, 924-925 (21 October 2010)

INFN-PG Workshop 2012

GW Astronomy ?

- Enlarge as much as possible the frequency range of GW detectors
 - Pulsar Timing Arrays
 - 10⁻⁹-10⁻⁶ Hz
 - Space based detectors (LISA/NGO, DECIGO)
 10⁻⁵-10⁻¹ Hz
 - 10⁻⁵-10⁻¹ Hz
 - Ground based detectors
 - 1-10⁴Hz
- Improve as much as possible the sensitivity to increase the detection volume (rate) and the observation SNR

LISA

- Space based gravitational wave detector
- ESA-NASA project
- Focused in the very low frequencies: $10^{-5} 10^{-2}$ Hz

eLISA/NGO

- Space based gravitational wave detector
- ESA-N/\CA project
- Focused in the very low frequencies: 10⁻³ 10⁻¹ Hz

INFN-PG Workshop 2012

Beyond Advanced Detectors

- Let suppose to gain a factor 10 wrt the Advanced detectors: What could we do?
- Astrophysics:
 - Measure in great detail the physical parameters of the stellar bodies composing the binary systems
 - NS-NS, NS-BH, BH-BH
 - Constrain the Equation of State of NS through the measurement
 - of the merging phase of BNS
 - of the NS stellar modes
 - of the gravitational continuous wave emitted by a pulsar NS
 - Contribute to solve the GRB enigma
- Relativity
 - Compare the numerical relativity model describing the coalescence of intermediate mass black holes
 - Test General Relativity against other gravitation theories
- Cosmology
 - Measure few cosmological parameters using the GW signal from BNS emitting also an e.m. signal (like GRB)
 - Probe the first instant of the universe and its evolution through the measurement of the GW stochastic background
- Astro-particle:
 - Contribute to the measure the neutrino mass
 - Constrain the graviton mass measurement

Scientific Potential of Einstein Telescope B.S.Sathyaprakash et al., CQG 29 (2012), 124013 , arXiv:1108.1423v2 [gr-qc]

INFN-PG Workshop 2012

The Einstein Telescope

The Einstein Telescope project concluded its conceptual design study phase, FP7-supported by the European Community, in July 2011.

The ET Science Team involved more than 220 scientist interested to the ET science from Europe, Russia, USA, Japan and Australia

Participant	Country
EGO	Italy France
INFN	Italy
MPG	Germany
CNRS	France
University of Birmingham	UK
University of Glasgow	UK
Nikhef	NL
Cardiff University	UK
	- W

INFN-PG Workshop 2012

Conceptual Design Document

- ET conceptual design document released:
 - <u>https://tds.ego-</u> gw.it/gl/?c=7954
- ~400 pages describing the main characteristics of the observatory
- The main conclusion is the demonstration of the need of a new research infrastructure, allowing the prosecution of the GW observation for decades.

ET: a 3rd generation GW observatory

- ET will be an underground & cryogenic set of detectors
- The Japanese KAGRA, under construction, is pioneering the technology

INFN-PG Workshop 2012

Binary System of massive stars

The new possibilities (for BS) of a 3rd generation GW observatory emerge from these two plots:

- Cosmological detection distance
- Frequent high SNR events

 Cosmological detection distance
 BNS are considered "standard sirens" (Schutz 1986) because, the amplitude depends only on the Chirp Mass and Luminosity distance D₁

$$A(t) = \left[M_{c}(m_{1}, m_{2}) \right]^{\frac{5}{3}} \left[\omega(t) \right]^{\frac{2}{3}} \frac{F(\theta, \phi, \psi, i)}{D_{L}}$$

 The masses are determined by detecting the frequency sweep through matched filtering

 The sky localization of the source (5 parameters) is determined by using 3 detectors

Multi-messenger Astronomy: GW+GRB

 The red-shift ambiguity "requires" an E.M. counterpart (GRB) to identify the hosting galaxy and then the red-shift z.

 Knowing D_L and z it is possible to probe the adopted cosmological model:

$$D_L(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{\left[\Omega_M(1+z)^3 + \Omega_\Lambda(1+z)^{3(1+w)}\right]^{1/2}}$$

Short gamma-ray burst Long gamma-ray burst (<2 seconds' duration) (>2 seconds' duration) A red-giant star collapses onto its core. Stars* in a compact binary system begin to spiral inward... .becoming so dense that it expels its outer ayers in a upernova ...eventually colliding. xolosion The resulting torus has at its center a powerful Torus black hole. $\Omega_{\rm M}$: total mass density Ω_{Λ} : Dark energy densit H₀: Hubble parameter w: Dark energy equation of state parameter

Gamma-Ray Bursts (GRBs): The Long and Short of It

Cosmology with ET

Measuring a cosmological distance–redshift relationship using only gravitational wave observations of binary neutron star coalescences

> C. Messenger School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA[•]

J. Read Department of Physics and Astronomy, The University of Mississippi, P.O. Box 1848, Oxford, Mississippi 38677-1848 (Dated: Thu Dec 1 11:04:23 2011 +0000)

 BNS aren't point particles! In the last phase of the coalescence the tidal deformation plays a role in the phase of the emitted wave and, if the EOS of the NS is known, it is possible to compute the physical masses: the degeneracy is broken!

Cosmology with the lights off: standard sirens in the Einstein Telescope era

Stephen R. Taylor^{*}

Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK (Dated: May 1, 2012)

 The mass distribution of NS is quite narrow → the incertitude on the physical mass is small knowing the reconstructed mass
 MGR13- ET

Neutron Stars (NS)ETThe EOS of the NS matter is still unknown• Why it pulses? It is a neutron or a "strange" matter star?

- What is the role of the Magnetic field in a NS?
- GW could investigate the NS EOS detecting the signal produced in different processes:
 - Coalescence of binaries
 - Full NR simulation of the plunge and merger phase
 - Asteroseismology
 - Detecting the internal modes of the NS
 - Continuous Wave (CW) emission of isolated NS

Supernova Explosions

- Mechanism of the core-collapse SNe still unclear
 - Shock Revival mechanism(s) after the core bounce TBC

 GWs generated by a SNe should bring information from the inner massive part of the process and could constrains on the core-collapse mechanisms

SNe rates with ET

Expected rate for SNe is about 1 evt / 20 years in the detection range of initial to advanced detectors

Distance [Mpc]

M31

- Our galaxy & local group
- To have a decent (0.5 evt/year) event rate about 5 Mpc must be reached

0.01

Milky Way

ET nominal sensitivity can promise this target

0.0001

1e-06

1e-08

1e-10

1e-12

1e-14

0.001

~ິ_ບ

GW energy (solar mass

Neutrinos from SNe

SNe detection with a GW detector could bring additional info:

- The 99% of the 10⁵³ erg emitted in the SNe are transported by neutrinos
- If a "simultaneous" detection of neutrinos and GW occurs the mass of the neutrino could be constrained at 1eV level (Arnaud 2002)
 Ando 2005
- But looking at the detection range of existing neutrino detectors (<Local group limited) is discouraging
- Some promising evaluation has been made (Ando 2005) for the next generation of Megaton-scale detectors

10

ISAPP - Pisa 2010

Conclusions

GW detection is expected within ~5 years
Or something wrong is in GR
The research field is still growing (new actors)
GW astronomy will be consolidated gaining anther factor 10 in sensitivity wrt advanced detectors:
3G (Einstein Telescope)

INFN-PG Workshop 2012