Svt meeting, Oct. 25th 2012

# Update Apsel3D\_TC chip characterization

#### Alejandro Pérez INFN – Sezione di Pisa



SEZIONE DI PISA

#### **Outline**

#### More about Noise scans

- Chip5
- Chip6

#### Differential spectrum with the Fe55 source

- Chip5
- Chip6

#### Noise occupancy for realistic observation time (5μs)

- Chip5
- Chip6



#### Noise scans: the fit function

Previously used a physics motivated function to describe the occupancies of the noise scans

#### Occupancy = $1.0 - \exp\{-v_0 t_{obs} \exp(-(thr - \mu)^2/2\sigma^2)\}$

- Where,  $\sigma$  is the noise, the  $\mu$  baseline,  $v_0$  the trip rate at zero threshold,  $t_{obs}$  the observation time. This expression is only valid if  $t_{obs} >>$  worst death-time. We used  $t_{obs} = 2ms$  (worst death time ~ 4\*50ns\*16 = 3.2 $\mu$ s).
- Using this function a significant fraction of the fits didn't converge (~28% for chip-5)
- Decided to used an asymmetric function with a different  $\sigma(\mu)$  to the left/right of  $\mu$ .  $\sigma(\mu) = \sigma_{L}(\sigma_{R})$  for thr  $-\mu < 0$  (thr  $-\mu > 0$ )
- With this function the failed fit reduces significantly (~12.8% for chip-5)
- The noise scan fits are used to extract the pixel base-line, which will be used to estimate the gain from Fe55 spectra

## Noise scans: Chip5 and Chip6

- Performed noise scans from 1250 up to 1500 DAC (100 steps of 4 DAC) with t<sub>obs</sub> = 2ms
- Chip5: only one pixel which doesn't turn on



• Chip6: a significant amount of dead pixels ( $28 \Rightarrow 11\%$ )



#### Noise fit: Chip5



## Noise scans: Chip5 and Chip6

- Some pixels for both chips show strange features
- The fit poorly converges in those cases



#### Noise scans: Chip5

In some cases the fit doesn't converge properly. Those pixels are not used for the plots below. 221 fits converged (there is 1 dead pixel).



#### Noise scans: Chip6

In some cases the fit doesn't converge properly. Those pixels are not used for the plots below. 204 fits converged (there is 28 dead pixel).



# **Data-taking with Fe55 source**

#### **Data with Fe55 source**

- With the Fe55 source took data varying the threshold,
  - Chip5: 1510 to 1780 in steps of 9 (units in DAC)
  - Chip6: 1591 to 1789 in steps of 9
- Out of the integral spectrum calculated the differential spectrum (bin\_i+1 bin\_i on the integral spectrum)
- Put together the differential spectrum of all the runs
- Tried to look for the Fe55 peak and fit it  $\Rightarrow$  Guassian+exponential
- For many pixels the Fe55 peak is visible, but for some others it seems that the scan window didn't go low enough. There are some which are completely empty
  Chip5



#### Fe55 source: Chip5 fit example



#### Fe55 source: Chip5 fit results



## Fe55 source: Chip5 the gain



## Fe55 source: Chip6 the gain



# Noise occupancy with realistic t<sub>obs</sub> (5µs)

# Realistic t<sub>obs</sub> (5µs)

- Wants to evaluate what is the matrix occupancy due to noise for realistic observation times (5µs) and for different thresholds
- Also wants to have an idea of the death time as a function of the threshold
- Did noise scans from 1388 to 1504 in steps of 4 (units in DAC)
- Prediction function: use the results from the high  $t_{obs}$  (2ms) noise scans  $(\mu, v_0, \sigma_R \text{ and } \sigma_L)$  and scale to the current  $t_{obs} \Rightarrow$  use the same noise function with the current  $t_{obs}$
- Use this function to try to predict the occupancies for the current t<sub>obs</sub>. Don't expect good description as death-time is non negligible
- Also estimate the matrix occupancy (fraction of pixel of the matrix that fired due to noise)

# Realistic t<sub>obs</sub> (5µs): variation of the base-line

- Base-line of noise scans for  $t_{obs} = 5\mu s$  is different than the one for  $t_{obs} = 2ms$
- Is this an effect of the temperature?
- To predict the pixel and matrix occupancy used the base-line for  $t_{obs} = 5\mu s$ and the other parameters  $(v_0, \sigma_R, \sigma_L)$  extracted for the noise scans with

```
t_{obs} = 2ms
```





Alejandro Pérez, Svt meeting, Oct. 26th 2012

# Realistic t<sub>obs</sub> (5µs): matrix occupancy

Wants to evaluate what is the matrix occupancy due to noise for realistic observation times (5µs) for different thresholds





#### Fe55 source: Chip5

Noise scan Chip5



#### Noise scan Chip6



Fe55 at 1520 DAC Thr Chip5







## Fe55 source: Chip5 and Chip6

For every pixel plot the maximum rate. Wants to check if source irradiates uniformly the matrix

