LFV Decays $\tau \rightarrow \ell \ell \ell$ with polarized τ 's

Thomas Mannel

Theoretische Physik I Universität Siegen

A (1) > A (2) > A

.⊒...>

CLFV workshop, Lecce May 6th, 2013

Contents

T. Mannel, Siegen University $au o \ell \ell \ell$ with polarized au's

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Introduction

- Discovery of Neutrino Osciallations opens the road to (nontrivial) Flavour Physics of Leptons
- Due to the Quantum numbers: Lepton Number Violation (LNV) versus Lepton Flavour Violation (LFV)
- The two effects may originate from different mass scales
- What are the effects on charged lepton decays?

く 同 と く ヨ と く ヨ と

- Effective field theory picture:
- Standard model (without right handed ν's) is the (dim-4) starting point.
- Any new physics manifests itself as higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\dim 4}^{SM} + \mathcal{L}_{\dim 5} + \mathcal{L}_{\dim 6} + \cdots$$

 $\bullet \ \mathcal{L}_{dim\,n}$ are suppressed by large mass scales

$$\mathcal{L}_{\dim n} = \frac{1}{\Lambda^{n-4}} \sum_{i} C_n^{(i)} O_n^{(i)}$$

 $O_n^{(i)}$: Operators of dimension *n*, $SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge invariant $C_n^{(i)}$: dimensionless couplings The combination

$$N_i = (H^{c,\dagger}L_i), \quad L_i = \begin{pmatrix}
u_{L,i} \\
\ell_{L,i} \end{pmatrix}, \ H^c = (i\tau^2)H^*, H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

has no SM Quantum numbers

 Unique dim -5 Operator: Generates Majorana masses for the ν's

$$\mathcal{L}_{\mathrm{dim\,5}} = rac{1}{\Lambda_{\mathrm{LNV}}} \sum_{ij} C_5^{ij} (\bar{L}_j H^c)^c (H^{c,\dagger} L_i)$$

Lepton Number Violating, related to the scale Λ_{LNV}
 Λ_{LNV} is known to be high, as big as the GUT scale?

・ 同 ト ・ ヨ ト ・ ヨ ト

Dim-6 Operators: (C)LNV

purely leptonic

$$\begin{array}{l} O_1 = (\bar{L}_i \gamma_\mu L_J) (\bar{L}_k \gamma^\mu L_l) & O_2 = (\bar{L}_i \gamma_\mu \tau^a L_j) (\bar{L}_k \gamma^\mu \tau^a L_l) \\ O_3 = (\bar{\ell}_{R,i} \gamma_\mu \ell_{R,j}) (\bar{\ell}_{R,k} \gamma^\mu \ell_{R,l}) & O_4 = (\bar{\ell}_{R,i} \gamma_\mu \ell_{R,j}) (\bar{L}_k \gamma^\mu L_l) \end{array}$$

radiative

$$m{R}_1 = g'(ar{L}_im{H}\sigma_{\mu
u}\ell_{R,j})m{B}^{\mu
u} \qquad m{R}_2 = g(ar{L}_i au^am{H}\sigma_{\mu
u}\ell_{R,j})m{W}^{\mu
u,a}$$

• dim 8 leptonic:

$$P_1 = ((\overline{L}_i H) \ell_{R,j})((\overline{L}_k H) \ell_{R,l}) \quad Q_1 = ((\overline{L}_i H) \ell_{R,j})(\overline{\ell}_{R,k}(H^{\dagger} L_l))$$

ヘロン ヘアン ヘビン ヘビン

э

and alike

• *i*, *j*, *k*, *l* are flavour indices.

Effective Operators for τ Decays

• For LFV τ decays ($\ell, \ell', \ell'' = \boldsymbol{e}, \mu$):

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{(LL)(LL)} &= \frac{\mathcal{G}_{V}^{(LL)(LL)}}{\Lambda^{2}} (\bar{\ell}_{L}\gamma_{\mu}\tau_{L}) (\bar{\ell}_{L}'\gamma^{\mu}\ell_{L}'') \\ \mathcal{H}_{\text{eff}}^{(LL)(RR)} &= \frac{\mathcal{G}_{V}^{(LL)(RR)}}{\Lambda^{2}} (\bar{\ell}_{L}\gamma_{\mu}\tau_{L}) (\bar{\ell}_{R}'\gamma^{\mu}\ell_{R}'') \\ \mathcal{H}_{\text{eff}}^{(RR)(LL)} &= \frac{\mathcal{G}_{V}^{(RR)(LL)}}{\Lambda^{2}} (\bar{\ell}_{R}\gamma_{\mu}\tau_{R}) (\bar{\ell}_{L}'\gamma^{\mu}\ell_{L}'') \\ \mathcal{H}_{\text{eff}}^{(RR)(RR)} &= \frac{\mathcal{G}_{V}^{(RR)(RR)}}{\Lambda^{2}} (\bar{\ell}_{R}\gamma_{\mu}\tau_{R}) (\bar{\ell}_{R}'\gamma^{\mu}\ell_{R}'') \end{aligned}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

In addition we have the radiative operators

$$\begin{array}{lll} \mathcal{H}_{\mathrm{rad}}^{(\mathrm{LR})} & = & \displaystyle \frac{\mathcal{g}_{\mathrm{rad}}^{(LR)} \mathbf{v}}{\Lambda^2} (\bar{\ell}_L \sigma_{\mu\nu} \tau_R) \mathcal{F}^{\mu\nu} \\ \mathcal{H}_{\mathrm{rad}}^{(\mathrm{RL})} & = & \displaystyle \frac{\mathcal{g}_{\mathrm{rad}}^{(LR)} \mathbf{v}}{\Lambda^2} (\bar{\ell}_R \sigma_{\mu\nu} \tau_L) \mathcal{F}^{\mu\nu} \end{array}$$

• ... and the helicity changing operators:

$$Q_{\text{eff},S}^{(LR)(LR)} = \frac{g_S^{(LR)(LR)}}{\Lambda^2} (\bar{\ell}_L \tau_R) (\bar{\ell}'_L \ell_R'')$$
$$Q_{\text{eff},T}^{(LR)(LR)} = \frac{g_T^{(LR)(LR)}}{\Lambda^2} (\bar{\ell}_L \sigma_{\mu\nu} \tau_R) (\bar{\ell}'_L \sigma^{\mu\nu} \ell_R'')$$

ヘロト ヘアト ヘビト ヘビト

3

Coupling Constants

- Coupling constants *C*_{ijkl} (and thus the *g*) depend on the specific model.
- ... see talks on specific models with CLVF
- Alternatively: Make us of leptonic minimal flavor violation (LMFV)

Cirigliano, Grinstein 2007; Dassinger, Feldmann, M., Turczyk 2007

ヘロト 人間 とくほとくほとう

1

Leptonic Minimal Flavour Violation

- In case of vanishing lepton and neutrino masses: Leptons have a SU(3)_L × SU(3)_{l_R} flavour symmetry
- Charged Lepton masses and Neutrino masses induce an explicit breaking:
 - Charged Lepton Mass Matrices:

$$\lambda = rac{1}{v} ext{diag}(m_e, m_\mu, m_ au)$$

- Majorana Mass Term from the dim-5 Operator: C_5 (3 × 3 Matrix)
- Spurion Analysis:

$$\lambda \sim (\bar{\mathbf{3}}, \mathbf{3}) \qquad C_5 \sim (\bar{\mathbf{6}}, \mathbf{1})$$

ヘロン 人間 とくほ とくほ とう

• Two spurion insertions:

$$C_5^\dagger imes C_5 \sim ar{6} imes 6 = 1 + 8 + 27$$

The octet part is

$$C_5^\dagger C_5 = rac{\Lambda^2}{
u^4} U_{PMNS} \Delta m_
u^2 U_{PMNS}^\dagger$$

- The (order of magnitude of the) couplings can be expressed in terms of PMNS matrix elements and the mass-squared differences of the neutrinos.
- Consequences for the g's

$$g_V^{(RR)(RR)},\,g_V^{(RR)(LL)},\,g_{
m rad}^{(RL)}\sim 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

due to small lepton masses.

Unpolarized Results

- Focus first on the decay $\tau \rightarrow 3\mu$:
- Study the Dalitz distribution in

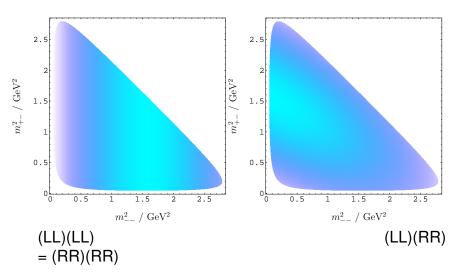
$$m^2_{--} = (p_{\mu^-} + p'_{\mu^-})^2$$
 and $m^2_{+-} = (p'_{\mu^-} + p_{\mu^+})^2$

• As an example: (LL)(LL) versus (LL)(RR)

$$rac{d\Gamma^{(LL)(LL)}}{dm_{--}^2 dm_{+-}^2} \propto (2m_\mu^2 - m_{--}^2)(m_\mu^2 - m_{--}^2 + m_\tau^2)
onumber \ rac{d\Gamma^{(LL)(RR)}}{dm_{--}^2 dm_{+-}^2} \propto f(m_{--}^2, m_{+-}^2)$$

ヘロト ヘアト ヘビト ヘビト

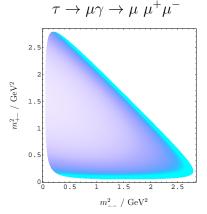
1



◆□> ◆□> ◆注> ◆注> 二注:

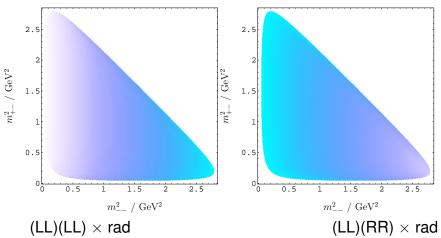
Radiative Contributions

• Aside from the purely leptonic operators we also have



... and the corresponding interference terms

T. Mannel, Siegen University $\tau \rightarrow \ell \ell \ell$ with polarized τ 's



Sign of the terms depends on the model!

イロト 不得 とくほと くほとう

э

Typical Model predictions

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	4G
$\frac{\mathcal{B}(\mu^- \rightarrow e^- e^+ e^-)}{\mathcal{B}(\mu \rightarrow e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$	0.062.2
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.07 2.2
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1	0.06 2.2
$\frac{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04	0.03 1.3
$\frac{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.04 1.4
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}$	0.82	\sim 5	0.3 0.5	1.52.3
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}$	0.7 1.6	\sim 0.2	510	1.4 1.7
$\frac{R(\mu Ti \rightarrow eTi)}{\mathcal{B}(\mu \rightarrow e\gamma)}$	10 ⁻³ 10 ²	$\sim 5\cdot 10^{-3}$	0.080.15	10 ⁻¹² 26

・ロト ・ 理 ト ・ ヨ ト ・

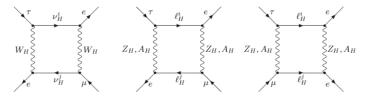
₹ 990

A few remarks on other $\tau \rightarrow 3\ell$ decays

 Including also electrons we can have modes with no "radiative pollution":

$$au^- o oldsymbol{e}^- oldsymbol{e}^- \mu^+ \qquad au^- o \mu^- \mu^- oldsymbol{e}^+$$

• There are models which have such "doubly lepton number violating" decays eg. Little Higgs with T-Parity



Reality

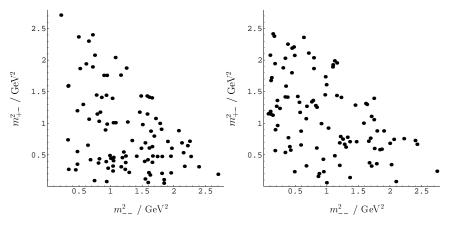
• CLNV processes appear in the SM, augmented by $\mathcal{L}_{dim 5}$ for neutrino masses.

$${
m Br}(au o \mu \gamma) \sim 10^{-54} \quad {
m Br}(au o 3\mu) \sim 10^{-56}$$

- A huge enhancement factor is needed to arrive at a measurable Br.
- Current limits [PDG]: ${\rm Br}(au
 ightarrow 3\ell) \sim 10^{-8}$
- There are models with Br's not far below this
- Assume that this is true and we can collect O (100) events.

▲圖 医 ▲ 国 医 ▲ 国 医

Simulation of the Dalitz plots with 100 Events



æ

Benefits from Polarization

- Disentangle the helicity structure of the NP operators
- Obtain a suppression of backgrounds

These points deserve a detailed analysis which has (to the best of my knowledge) not yet been done

・ 回 ト ・ ヨ ト ・ ヨ ト

Some well known facts on polarization

- Consider a *τ*-Charm factory
 High Lumi e⁺ e⁻ collider at the *τ* threshold
- (Longitudinally) polarized e⁺ e⁻ beams with a sizable polarization (90%)
- At threshold: τ pairs are produced in s waves: Highly polarized τ's, polarization in beam direction
- For electrons at these energies: helicity = chirality
- For positrons at these energies: helicity = chirality
- $e^+ e^-$ cross sections: $\sigma(++) = 0 = \sigma(--)$

・ロト ・ 理 ト ・ ヨ ト ・

Unpolarized beams:

$$\sigma = \frac{1}{4}[\sigma(+-) + \sigma(-+)]$$

• polarization of the *e*⁻ beam:

$$\sigma = \frac{1}{4}[\sigma(+-) + \sigma(-+)] + \frac{w_{-}}{4}[\sigma(+-) - \sigma(-+)]$$

Both beams polarized

$$\sigma = \frac{1 + w_+ w_-}{4} [\sigma(+-) + \sigma(-+)] + \frac{w_+ + w_-}{4} [\sigma(+-) - \sigma(-+)]$$
with $w_+ = -\frac{N_+^+ - N_-^-}{N_+^+ + N_-^-}$ and $w_- = \frac{N_-^+ - N_-^-}{N_-^+ + N_-^-}$

- Positron polarization does not yield new information
- However, positron polarization enhances the "effective" polarization

$$w_-
ightarrow w_{
m eff} = rac{w_+ + w_-}{1 + w_+ w_-}$$

- for $w_{-} = w_{+} = 0.9$ we have $w_{eff} = 0.994$.
- At threshold: Both *τ*'s are in an *s* wave: Spins aligned with the beam axis!

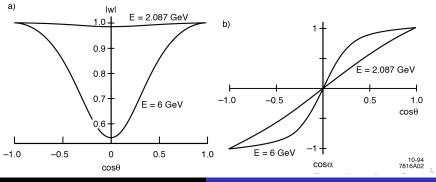
イロト 不得 とくほと くほとう

э.

au polarization

*š*_± (unit length) spin vectors of τ_±
Polarization of τ₊

$$w_{\pm} = \frac{[N_{\pm} \text{ with } + \vec{s}_{\pm}] - [N_{\pm} \text{ with } - \vec{s}_{\pm}]}{[N_{\pm} \text{ with } + \vec{s}_{\pm}] + [N_{\pm} \text{ with } - \vec{s}_{\pm}]}$$



T. Mannel, Siegen University $au o \ell \ell \ell$ with polarized au's

au ightarrow 3 μ with polarized au's

- A lot of work has been dedicated to CP studies in polarized τ decays
- Here one studies "bread and butter" decays, looking at specific observables
- $\bullet \rightarrow A$ lot of data, allowing detailed angular analyses.
- However, in CLFV decays we do not have large data samples
 - \rightarrow a different strategy

・ 同 ト ・ ヨ ト ・ ヨ ト

• Energy distribution of the μ^+ in $\tau \to \mu^- \mu^- \mu^+$

$$d\Gamma = f(x) \pm g(x) \, \vec{s} \cdot \vec{e}_+$$

- x = 2E₊/m_τ: rescaled energy variable
 s
 ^s: Spin of the τ in its rest frame
 e
 ^e₊: Flight direction of the μ⁺ in the rest frame of τ
- "Forward backward asymmetry" a_{FB} ($\vec{s} \cdot \vec{e}_{+} = \cos \theta$)

$$a_{ ext{FB}} = rac{1}{d\Gamma} \left[\int_{ heta=0}^{ heta=\pi/2} d\Gamma d\Omega_ heta - \int_{ heta=\pi/2}^{ heta=\pi} d\Gamma d\Omega_ heta
ight] = rac{g(x)}{f(x)}$$

ヘロト 不得 とうき とうとう

э

- (LL)(LL) contribution ($m_{\mu}=0$) $d\Gamma \propto x(1-x)\left[1\mpec{s}\cdotec{e}_{+}
 ight] a_{
 m FB}=1$
- (LL)(RR) contribution ($m_{\mu}=0$)

$$egin{aligned} &d\Gamma \propto x(3-2x) \mp x(2x-1)ec{s}\cdotec{e}_+\ &a_{ ext{FB}} = rac{2x-1}{3-2x} \end{aligned}$$

• (RR)(RR) contribution ($m_{\mu} = 0$)

$$d\Gamma \propto x(1-x) \left[1\pm ec{s}\cdot ec{e}_+
ight] \ a_{
m FB}=-1$$

 Likewise (RR)(LL): Sign change in the spin-dependent term. • (LR)(LR) scalar contribution ($m_{\mu} = 0$)

$$d\Gamma \propto x(1-x) \left[1 \pm ec{s} \cdot ec{e}_+
ight] \ a_{
m FB} = 1$$

- Sign flip of the spin dependent piece for (RL)(RL)
- Clean handle to disentangle helicities
- Integration over energy
- A serious study should include the μ mass.

ヘロト 不得 とうき とうとう

э.

Muon polarization

- Additional information is contained in the polarization of the muon
- Needs a analysis if the μ decay products.
- $\bullet \ \rightarrow \text{Needs a sufficient data sample}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Outlook

- Polarization of initial lepton is very useful
- ... both beams, if possible
- However, not for the discovery of the decay modes,
- but for the identification of the underlying interaction.
- Role of polarization in background suppression ...

All these points deserve a more detailed study!

・ 同 ト ・ ヨ ト ・ ヨ ト