MEG : Status and Upgrades

Ryu Sawada
The University of Tokyo
on behalf of MEG collaboration

7/May/2013
CLFV 2013

Physics Motivation

- Forbidden in the standard model
- Discovery \rightarrow evidence of new physics.
- MEG is exploring the new physics region

Signal \& background

- Signal
- μ^{+}decay at rest
- 52.8 MeV (half of $\left.\mathrm{M}_{\mu}\right)\left(\mathrm{E}_{\gamma}, \mathrm{E}_{\mathrm{e}}\right)$
- Back-to-back ($\theta_{\mathrm{er}}, \varphi_{\mathrm{er}}$)
- Timing coincidence (T_{er})
- Accidental background
- Michel decay $\mathrm{e}^{+}+$random γ
- Dominant background
- Random timing, angle, $\mathrm{E}<52.8 \mathrm{MeV}$

- Radiative muon decay
- $\mu \rightarrow \mathrm{evvr}$
- Timing coincident, not back-to back, E $<52.8 \mathrm{MeV}$

MEG detector

PSI in Switzerland

Eur. Phys. J. C, 73 (2013) 2365

Key items for $\mu \rightarrow \mathrm{e} \gamma$ experiments

High rate Very high rate μ beam

Good resolution for relatively low (52.8 MeV) energy particles

Background) Reducing accidental backgrounds

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$		
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6		
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9		
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4		

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1	
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9	8.8	
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4	8.3	

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$		
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6		
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9		
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4		

Beam and target

PSI
пE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1	
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9	8.8	
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4	8.3	

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$		
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6		
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9		
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4		

Beam and target

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1	
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9	8.8	
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4	8.3	

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$		
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6		
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9		
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4		

Beam and target

Slit opening	Collimator position			COBRA center		
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm}) R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6	
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9	
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4	

$205 \mu \mathrm{~m}$ thick polyethylene plate
Slanted angle of 20.5°
$79.8 \times 200.5 \mathrm{~mm}$
Stopping efficiency : 82\%

Beam and target

PSI
 mE5

Slit opening	Collimator position			COBRA center			
	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{y}(\mathrm{~mm})$	$R_{\mu}(\mathrm{Hz})$ at 2 mA	$\sigma_{x}(\mathrm{~mm})$		
$250 / 280$	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^{7}$	9.6		
$115 / 115$	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9 \cdot 10^{7}$	8.9		
$70 / 70$	$6.5 \cdot 10^{6}$	20.4	15.8	$5.8 \cdot 10^{6}$	8.4		

Trigger and Electronics

- Trigger

- FPGA based trigger system
- Physics-event trigger
- γ energy
- Time coincidence between γ and $\mathrm{e}^{+} \rightarrow 100 \mathrm{~Hz}$
- Direction match $\rightarrow 10 \mathrm{~Hz}$
- >95\% efficiency for signal
- Readout
- DRS digitizer chip developed at PSI
- Sampling up to 5 GHz (0.8 or 1.6 GHz used in MEG)
- 12 bit voltage digitization
- 16 ch per VME board

> http://midas.psi.ch/drs

- Slow-control and DAQ
- 9 frontend computers and an event builder - MIDAS DAQ framework
- MSCB slow-control bus

DRS mezzanine board

http://midas.psi.ch

Positron spectrometer magnet

Low energy positron quickly swept away

COnstant Bending RAdius independent of emission angles

Positron spectrometer magnet

Low energy positron quickly swept away

COnstant Bending RAdius independent of emission angles

- Made of thin materials (0.2Xo)
- Precise 3D field mapping

Positron spectrometer magnet

Low energy positron quickly swept away

COnstant Bending RAdius independent of emission angles

Positron spectrometer magnet

Positrons do not hit magnet walls

Low energy positron quickly swept away

COnstant Bending RAdius independent of emission angles

walls

Positron spectrometer magnet

Low energy positron quickly swept away

COnstant Bending RAdius independent of emission angles

Drift chambers

$Z(\theta)$ direction

$R(\Phi)$ direction

- 16 radial drift chambers

High rate

- Only high momentum e^{+}($>40 \mathrm{MeV}$, $19.3 \mathrm{~cm}<\mathrm{r}<27.9 \mathrm{~cm}$)
- Chamber gas $\mathrm{He}: \mathrm{C}_{2} \mathrm{H}_{6}=50: 50$

- Low material budget $\left(\sim 2 \times 10^{-3} X_{0}\right.$ for one turn of e^{+}trajectory)
- Open frame at the target side
- Low MS, low γ background

Positron spectrometer performance

Theoretical Michel spectrum

- Momentum resolution is extracted from a fit to Michel edge spectrum
- Detector response
- double gaussian + acceptance
- $\sigma_{p}=330 \mathrm{keV}(79 \%)+1.56 \mathrm{MeV}(21 \%)$

Acceptance function

Positron spectrometer performance, cont.

reconstructed by
($1^{\text {st }}$ turn)
reconstructed by \star
($2^{\text {nd }}$ turn)
drift chamber
Angular resolutions measured comparing twosegments of 2-turn tracks

Resolutions for signal (after MC corrections)

Vertex position
$\sigma_{z} 2.5 \mathrm{~mm}$
$\sigma_{y} 1.1 \mathrm{~mm}(86 \%), 5.3 \mathrm{~mm}(14 \%)$
Emission angle
$\sigma_{\theta} 9.4 \mathrm{mrad}$

$\sigma_{\varphi} 8.4 \mathrm{mrad}(80 \%), 38 \mathrm{mrad}(20 \%)$ for $\varphi=0$

Timing counter

- 15×2 (Upstream/Downstream) plastic scintillator bars $\left(4 \times 4 \times 80 \mathrm{~cm}^{3}\right)$
- Fine mesh PMTs at both ends, positron timing measurement
- Positron φ, z position reconstruction using charge-ratio (online) or time-difference (offline).

Time resolutions

Timing resolution of TC : 65 psec

2.7t Liquid xenon gamma-ray detector

- γ measurement with high resolutions Resolution and efficiency in a large acceptance Efficiency
- Pileup elimination in offline analysis

- 900L liquid xenon
- 846 2" PITs (Hamamatsu)
- Submerged in Liquid
- γ energy, position, and timing reconstruction
- Merits
- High light output(80% of NaI)
- Fast timing response(45ns)
- Heavy $\left(3 \mathrm{~g} / \mathrm{cm}^{3}\right)$
- Challenges
- Low temperature (160K)
- 200W pulse tube cryocooler
- Short scintillation wavelength (175nm)
- Gas/liquid purification

Calibration and monitoring

Time
$B(p, \gamma)(4.4+11.7 \mathrm{MeV})$ п0 $\rightarrow \mathrm{e}^{+} \mathrm{e} \gamma(55-83 \mathrm{MeV}$) Muon radiative decay

Process	Energy (MeV)	Frequency	
Charge exchange	$\pi^{-} p \rightarrow \pi^{0} n$	$54.9,82.9$	yearly
Charge exchange	$\pi^{0} \rightarrow \gamma \gamma$		
Radiative μ^{+}decay	$\pi^{-} p \rightarrow n \gamma$	129.0	yearly
Proton accelerator	$\mu^{+} \rightarrow \mathrm{e}^{+} \gamma \nu \nu$	14.83 endpoint	weekly
	${ }^{7} \mathrm{Li}\left(p, \gamma_{17} .6(14.8)\right)^{8} \mathrm{Be}$	$4.4,11.6$	weekly
Nuclear reaction	${ }^{11} \mathrm{~B}\left(p, \gamma_{4.4} \gamma_{11.6}\right)^{12} \mathrm{C}$	9.0	weekly
AmBe source	${ }^{58} \mathrm{Ni}\left(n, \gamma_{9.0}\right)^{59} \mathrm{Ni}$	4.4	daily
	${ }^{9} \mathrm{Be}\left(\alpha_{241} \mathrm{Am}, n\right)^{12} \mathrm{C}_{*}$		daily
	${ }^{12} \mathrm{C}_{*} \rightarrow{ }^{12} \mathrm{C} \gamma_{4.4}$		

Energy Scale Stability

- Absolute scale calibration
- 55 MeV CEX gamma
- Time variation corrected using
- 17.6 MeV CW gamma9 MeV Ni-n gamma
- 4.4 MeV AmBe gammaCosmic ray peak
- Checked using background gamma spectrum during physics run

Before correction

- CW data (used for correction)
- BG data (not used for correction)

After correction

Energy resolution

Measured using 55 MeV CEX gamma rays

- Energy deposit in material before entering LXe (Magnet, cryostat, PMT holder etc.)
- Energy escape from LXe

Average resolutions
1.7% (depth>2cm), 2.4\% (depth<2cm)

Resolution map

Position resolution

Measured using lead collimators with CEX data

[^0]

Width is compared with MC

Timing resolution

Time difference between LXe calorimeter and a reference counter in CEX data

Time resolution : 67 ps $\quad-1$ Time difference $[\mathrm{nsec}]$
=119ps - beam spread(58ps) - resolution of reference counter(81ps)

Breakdown

Intrinsic	36 ps
ToF (depth)	20 ps
Electronics	24 ps
Position resolution and shower fluctuation	46 ps

Positron - photon timing

- Radiative muon decay peak
- In normal physics run
- Corrected by small energy dependence

Timing resolution for signal is 122 ps
taking into account the energy dependence

Time Line
Previous publication (Phys. Rev. Lett. 107, 171801)
New publication

$\stackrel{\rightharpoonup}{\circ}$

$\stackrel{\circ}{\circ}$
$\stackrel{\underset{\sim}{N}}{ }$
$\stackrel{N}{N}$
$\stackrel{\sim}{\stackrel{N}{N}}$

Now we are starting 2013 physics run. analyzing

New result from Run2009-2011

Data statistics

DAQ efficiency $87 \% \rightarrow 96 \%$ in 2011

Improvements for the new result

- 2011 data
- Doubled the statistics
- Hardware modifications
- Nal detector used for calorimeter calibration run was replaced with BGO
- Laser tracker system for target and drift chamber initial alignment
- Improvements of analysis, applied for 2009-2011 data
- Reconstruction improvements (next slide)
- Physics analysis
- per-event PDF for e^{+}

Reconstruction improvements

e^{+}

FFT based offline noise reduction

- 6\% higher signal efficiency
- Angular resolution improved a few percent
Revised track-fitter
-7\% higher efficiency
- Reduced tail component

Improved pileup unfolding using waveform

- 7\% higher signal efficiency
- Reduced tail component

Analysis method

Projection to $\boldsymbol{E}_{\boldsymbol{e}}$
Likelihood fitting with 5 observables $\overrightarrow{\boldsymbol{x}}=\left(\begin{array}{l}E_{\gamma}: \text { Gamma energy } \\ E_{e}: \text { Positron energy } \\ t_{e r}: \text { Time difference } \\ \theta_{e_{r}}: \theta \text { angle difference } \\ \varphi_{e_{\gamma}}: \varphi \text { angle difference }\end{array}\right.$

Unbinned likelihood fitting

I will explain later...

$$
\mathcal{L}\left(N_{\text {sig }}, N_{\mathrm{RMD}}, N_{\mathrm{BG}}\right) \geqslant f\left(N_{\text {sig }}, N_{\mathrm{RMD}}, N_{\mathrm{BG}}\right) \times
$$

$$
\prod_{i=1}^{N_{\mathrm{obs}}}\left(N_{\mathrm{sig}} S\left(\vec{x}_{i}\right)+N_{\mathrm{RMD}} \hat{R}\left(\vec{x}_{i}\right)+N_{\mathrm{BG}} B\left(\vec{x}_{i}\right)\right)
$$

BG: Accidental
RMD : Radiative muon decay

Likelihood and test-statistic

$$
\mathcal{L}\left(N_{\mathrm{sig}}, N_{\mathrm{RMD}}, N_{\mathrm{BG}}\right)=
$$

$$
\prod_{i=1}\left(N_{\mathrm{sig}} S\left(\overrightarrow{x_{i}}\right)+N_{\mathrm{RMD}} R\left(\overrightarrow{x_{i}}\right)+N_{\mathrm{BG}} B\left(\overrightarrow{x_{i}}\right)\right)
$$

Two Gaussian

 constrain$\mathrm{N}_{\text {RMD }}$ and N_{BG}

$$
\lambda_{\mathrm{p}}\left(N_{\text {sig }}\right)=\frac{\mathcal{L}\left(N_{\text {sig }}, \hat{N}_{\mathrm{RMD}}\left(N_{\text {sig }}\right), \hat{N}_{\mathrm{BG}}\left(N_{\text {sig }}\right)\right)}{\mathcal{L}\left(\hat{N}_{\text {sig }}, \hat{N}_{\mathrm{RMD}}, \hat{N}_{\mathrm{BG}}\right)}
$$

Profile likelihood ordering Feldman-Cousins approach

Resolutions :

$\sigma_{x}=s_{x} \times \sigma_{x}^{\prime}$
fitting error

Scaling factors extracted from

1) Michel spectrum : Momentum
2) 2-turn method : Angular \& Vertex

Correlations : between observables

$$
d \mu_{y}=p_{x y} \times d x
$$

$$
p_{x y}=p_{x y}^{\prime} \times \frac{\sigma_{y}^{\prime}}{\sigma_{x}^{\prime}}
$$

Correlation parameters extracted from data and MC

Sensitivity improved by 10%

Examples

Signal PDF Data

Time side-bands 2009-2011 data

T_{er} negative sideband

T_{er} positive sideband

Sensitivity

Median upper limit of pseudo-experiments (MC) with backgroundonly hypothesis

$$
\text { median }=1.3 \times 10^{-12}
$$

c.f. 1.6×10^{-12} in previous publication (20\% improvement)

median $=7.7 \times 10^{-13}$

First $\mu \rightarrow e r$ search with $\mathbf{O}\left(10^{-13}\right)$ sensitivity

$\underline{2009+2010 \text { data }}$

No excess: $\mathrm{N}_{\text {signal }}$ best fit is $0.3^{+4.1}{ }^{-1.5}$
contour : signal PDF (39.3, 74.2, 86.5 \%) $\xlongequal{\text { errors : MINOS } 1.645 \sigma} 30$

Comparison with previous analysis

- Previous analysis

- New analysis

- High ranked events are stable
- Differences of observables by modifications of reconstruction algorithms are smaller than resolutions.

Change of UL by modifications of reconstruction algorithms. (MC)

$\overline{\text { R.Sawada }} \cos \Theta_{\mathbf{e} \gamma}$

2011 data

No excess: $\mathrm{N}_{\text {signal }}$ best fit is $-1.4^{+3.8}{ }_{-1.3}$ (slight negative fluctuation)

2009-2011 data

No excess: $\mathrm{N}_{\text {signal }}$ best fit is $-0.4^{+4.8}{ }_{-1.9}$
contour : signal PDF (39.3, 74.2, 86.5 \%) errors : MINOS 1.6450 33

2009-2011 Fit Result

Total dotted line : 90\% UL

Unbinned likelihood fitting on 5 dimension observable data

$$
\begin{aligned}
& N_{\text {sig }}=-0.4^{+4.8}-1.9 \\
& N_{\text {acc }}=2413.6 \pm 37 \\
& N_{R M D}=167.5 \pm 24
\end{aligned}
$$

errors : MINOS 1.645б

2009-2011 result

normalization : 7.77×10^{12}
Previous limit : $\mathbf{2 . 4 \times 1 0 ^ { - 1 2 }}$ (MEG, 2011)

Likelihood

Dataset	$\mathcal{B}_{\text {fit }} \times 10^{12}$	$\mathcal{B}_{90} \times 10^{12}$	$\mathcal{S}_{90} \times 10^{12}$
2009-2010	0.09	1.3	1.3
2011	-0.35	0.67	1.1
2009-2011	-0.06	0.57	0.77

arXiv:1303.0754 [hep-ex]
accepted by Phys. Rev. Lett.
Systematic uncertainties (in total 1\% in UL)

- relative angle offsets
- correlations in e^{+}observables

Expected final sensitivity

Data taking will be done until Summer 2013

Since 2012, 15\% higher beam rate is used

2009-2011 sensitivity
 7.7×10^{-13}
 Expected 2009-2013 sensitivity

double the statistics

Observed limits and sensitivity

MEG Upgrade

arXiv:1301.7225 [physics.ins-det]

The proposal was accepted by PSI

Beam and target

Z-Branch Momentum Spectrum

target stops versus ranging-out particles

Baseline design

- $7 \times 10^{7} \mu / \mathrm{s}$
- Surface beam
- $140 \mu \mathrm{~m}$ thick target, 15° slanted
>2 times higher beam rate

Detector

5.

5.

Spectrometer : Cylindrical drift chamber

Expected performance
Prototype

Efficiency
: >85\%
Hit resolution
: $120 \mu \mathrm{~m}$
Momentum resolution : 130 keV
Angular resolution : $3.7 \mathrm{mrad}(\varphi), 5.3 \mathrm{mrad}(\theta)$

Double the efficiency, and half the resolutions compared to present spectrometer

Pixelated timing counter

Plastic scintillator plate + SiPMs

4.8 counter-hits in average

Overall time resolution : 35 psec
About half the resolutions compared to present timing-counter

LYe gamma detector

Energy response

shallow conversion

Position resolution

deep conversion

Half the position resolutions

About Half the energy resolution
compared to present calorimeter

Electronics

Readout, HV and trigger are integrated on same board.

Electronics

WaveDREAM board

- Put SiPM HV (70-210V) on boards
- Digitize all inputs continuously with $85 \mathrm{MHz} / 12$ bit
- Upon trigger, read DRS through same ADC
- VME $\rightarrow 3$ HE 19" crates
- Higher density
- Cheaper
- Faster
- "Added value" to DAQ boards - Switchable gain amplifiers - Second level trigger

256 Channels 5 GSPS/12 bits on a 3HE crate including trigger and SiPM high voltage

WaveDREAM2 boards
Trigger concentrator board
DAQ concentrator board

Other possibilities

Active target

- Target made of $250 \mu \mathrm{~m}$ plastic scintillation fibers
- Very precise measurements of muon decay position

Low momentum e^{+}detector

- Identify background γ from radiative muon decay
- Half of background γs are from radiative decays

RDC : radiative decay counter

Further background reduction

Hardware development ongoing
R.Sawada MEG: Status and Upgrades CLFV2013

Schedule

Data statistics in the future

$$
\begin{aligned}
& \text { k factor } \\
& =\text { SES }^{-1}\left(\times 10^{12}\right) \\
& 50
\end{aligned}
$$

Expected performance and Sensitivity

PDF parameters	Present MEG	Upgrade scenario
e^{+}energy (keV)	$306($ core $)$	130
$\mathrm{e}^{+} \theta(\mathrm{mrad})$	9.4	5.3
$\mathrm{e}^{+} \phi(\mathrm{mrad})$	8.7	3.7
e^{+}vertex $(\mathrm{mm}) Z / Y(\mathrm{core})$	$2.4 / 1.2$	$1.6 / 0.7$
γ energy $(\%)(w<2 \mathrm{~cm}) /(w>2 \mathrm{~cm})$	$2.4 / 1.7$	$1.1 / 1.0$
γ position $(\mathrm{mm}) u / v / w$	$5 / 5 / 6$	$2.6 / 2.2 / 5$
$\gamma-\mathrm{e}^{+}$timing (ps)	122	84
Efficiency $(\%)$		
trigger	≈ 99	≈ 99
γ	63	69
e^{+}	40	88

Sensitivity in three years : $\sim 5 \times 10^{-14}$

Conclusions

- First $\mu \rightarrow e \gamma$ search with $O\left(10^{-13}\right)$ sensitivity
- Sensitivity : 7.7×10^{-13}
- No excess was found
- 4 times stringent new limit: $\mathcal{B}<5.7 \times 10^{-13}$
(Related posters
"Measurement of inner Bremsstrahlung in polarized muon decay with MEG"

R\&D on the drift chamber for MEG upgrade Active target for MEG upgrade
by Y. Uchiyama
by L. Galli et al by A. Papa et al
@ 90\% C.L.

- Data taking will be done until summer 2013
- Double the statistics
- Expected sensitivity : $\sim 5 \times 10^{-13}$
- Upgrade proposal was accepted, and R\&D ongoing
- More intense beam, double the efficiency and half the resolutions.
- Expected sensitivity : $\sim 5 \times 10^{-14}$ in 3 years starting from 2016

Back up

Track reconstruction

R direction (drift time)
4 -fdiection Drift circle

Z direction (charge ratio)

Single hit intrinsic resolution

$$
\begin{aligned}
& \mathrm{R}: 210 \mu \mathrm{~m} \text { (core, } 87 \% \text {), } 780 \mu \mathrm{~m} \text { (tail, } 13 \% \text {) } \\
& \mathrm{Z}: 800 \mu \mathrm{~m} \text { (core, } 91 \% \text {), } 2.1 \mathrm{~mm} \text { (tail, } 9 \% \text {) }
\end{aligned}
$$

Calibration and monitoring

Calibration and monitoring

Time
$B(p, y)(4.4+11.7 \mathrm{MeV})$ $\pi 0 \rightarrow \mathrm{e}^{+}$еу ($55-83 \mathrm{MeV}$) Muon radiative decay

Once (or twice) per year
Absolute energy calibration PMT time calibration
Energy and time resolution
Tagging detector

Pion Charge EXchange (CEX)

$$
\begin{aligned}
& \pi^{-+p} \rightarrow \pi^{0}+n \\
& \pi^{0} \rightarrow \mathrm{VY}(55 \mathrm{MeV}, 83 \mathrm{MeV})
\end{aligned}
$$

LH_{2} target
Calorimeter

Energy Scale Uniformity

- Non-uniformity due to
- Geometry
- Reconstruction algorithm
- Correction using
- 17.6 MeV CW gamma for position
- Monitored weekly
- 55 MeV CEX gamma for depth (energy dependent)
- Checked using background gamma spectrum during physics run

After correction : $\sim 0.2 \%$ uniform
17.6 MeV CW data uniformity before correction

Linearity

Alignment between detectors

- Positron spectrometer
- Optical survey
- Photon detector
- PMT position scan using AmBe source
- Calibration 17.6 MeV gamma, with lead collimators

Cosmic rays passing both systems
$\sim 1 \mathrm{~mm}$ agreement in various methods

Probability density functions (PDF)

Signal RMD BG

Signal : CEX data
BG : Sideband data
RMD : SM + detector response

Signal : Michel e^{+}edge fitting
BG : Sideband data
RMD : SM + detector response

Probability density functions (PDF)

er

Signal : RMD data
BG : Flat
RMD : SM + detector response

Normalization

Event distribution (previous analysis)

2009+2010 data
$\mathcal{B}<2.4 \times 10^{-12}$

Phys. Rev. Lett. 107171801

2009+2010 Fit Result

Unbinned likelihood fitting on 5 dimension observable data

Total dotted line : 90\% UL

$\mathrm{N}_{\text {sig }}=0.3^{+4.1_{-1.5}}$
$N_{\text {acc }}=1198.4 \pm 26$
$N_{\text {RMD }}=83.4 \pm 13$
errors: MINOS 1.645б

[^0]: Position resolution : 5 mm

