MEG : Status and Upgrades

Ryu Sawada The University of Tokyo on behalf of MEG collaboration

> 7/May/2013 CLFV 2013

Physics Motivation

- Forbidden in the standard model
- Discovery \rightarrow evidence of new physics.
- MEG is exploring the new physics region

MEG : Status and Upgrades

Signal & background

- Signal
 - μ⁺ decay at rest
 - 52.8MeV (half of M_{μ}) (E_{γ} , E_{e})
 - Back-to-back $(\theta_{e\gamma}, \phi_{e\gamma})$
 - Timing coincidence $(T_{e_{\gamma}})$
- Accidental background
 - Michel decay e^+ + random γ
 - Dominant background
 - Random timing, angle, E < 52.8MeV

- Radiative muon decay
 - $\mu \rightarrow e \nu \nu \gamma$
 - Timing coincident, not back-to back, E
 < 52.8MeV

e⁺

CLFV2013

R.Sawada

MEG detector

PSI in Switzerland

Eur. Phys. J. C, 73 (2013) 2365

MEG : Status and Upgrades

CLFV2013

Key items for $\mu \rightarrow e\gamma$ experiments

High rate

Very high rate μ beam

Good resolution for relatively low (52.8 MeV) energy particles

Background Reducing accidental backgrounds

R.Sawada

CLFV2013

Slit opening	5	Collimator position	n		COBRA cente	er
Sec.	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7\cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

PSI πE5

Slit opening Collimator position			COBRA center			
1 Stand	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)
250/280	$9 \cdot 10^{7}$	21.8	18.6	$7 \cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

CLFV2013

Slit opening	5	Collimator position	n		COBRA cente	er
Sec.	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7\cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

Slit opening	g	Collimator position	ı		COBRA cente	er
1. Start	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

CLFV2013

Slit opening	5	Collimator position	n		COBRA cente	er
Sec.	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7\cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

Slit opening	g	Collimator position		and the second	COBRA cente	r
	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

CLFV2013

Slit opening	5	Collimator position	n		COBRA cente	er
Sec.	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7\cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

Slit opening	g	Collimator position			COBRA cente	r
S. S. S.	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7 \cdot 10^{7}$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

205 µm thick polyethylene plate Slanted angle of 20.5° 79.8×200.5 mm Stopping efficiency : 82%

R.Sawada

CLFV2013

Slit opening	5	Collimator position	n		COBRA cente	er
Sec.	R_{μ} (Hz) at 2mA	σ_x (mm)	σ_y (mm)	R_{μ} (Hz) at 2mA	$\sigma_x (\mathrm{mm})$	σ_y (mm)
250/280	$9\cdot 10^7$	21.8	18.6	$7\cdot 10^7$	9.6	10.1
115/115	$3.5 \cdot 10^{7}$	21.4	15.5	$2.9\cdot 10^7$	8.9	8.8
70/70	$6.5 \cdot 10^6$	20.4	15.8	$5.8\cdot 10^6$	8.4	8.3

R.Sawada

Trigger and Electronics

• Trigger

- FPGA based trigger system
- Physics-event trigger
 - γ energy

 \bullet Time coincidence between γ and $e^{\scriptscriptstyle +} \rightarrow 100 \mbox{ Hz}$

- Direction match
- >95% efficiency for signal

Readout

- DRS digitizer chip developed at PSI
 - Sampling up to 5GHz (0.8 or 1.6 GHz used in MEG)
 - 12 bit voltage digitization
 - 16 ch per VME board

http://midas.psi.ch/drs

Slow-control and DAQ

- 9 frontend computers and an event builder
- MIDAS DAQ framework
- MSCB slow-control bus

http://midas.psi.ch

R.Sawada

MEG : Status and Upgrades

 \rightarrow 2×10³ Hz

 \rightarrow 10 Hz

Live time - online efficiency plane

 $2010 \rightarrow 2011$: multiple-buffer readout

DRS mezzanine board

m

CLFV2013

(High rate

R.Sawada

MEG : Status and Upgrades

CLFV2013

(High rate)

R.Sawada

MEG : Status and Upgrades

CLFV2013

(High rate

R.Sawada

MEG : Status and Upgrades

CLFV2013

(High rate)

8

R.Sawada

(High rate

R.Sawada

MEG : Status and Upgrades

CLFV2013

Drift chambers

9

CLFV2013

R.Sawada

Positron spectrometer performance

R.Sawada

Timing counter

- 15×2(Upstream/Downstream) plastic scintillator bars (4×4×80cm³)
 - Fine mesh PMTs at both ends, positron timing measurement
 - Positron φ, z position reconstruction using charge-ratio (online) or time-difference (offline).

Timing resolution of TC : 65 psec

R.Sawada

MEG : Status and Upgrades

CLFV20

2.7t Liquid xenon gamma-ray detector

R.Sawada

MEG : Status and Upgrades

= 1 č

Calibration and monitoring

Process		Energy (MeV)	Frequency
Charge exchange	$\pi^{-}p \to \pi^{0}n$ $\pi^{0} \to \gamma\gamma$	54.9, 82.9	yearly
Charge exchange	$\pi^- p \to n\gamma$	129.0	yearly
Radiative μ^+ decay	$\mu^+ \rightarrow e^+ \gamma \nu \nu$	52.83 endpoint	weekly
Proton accelerator	$^{7}\text{Li}(p, \gamma_{17.6(14.8)})^{8}\text{Be}$	14.8, 17.6	weekly
	$^{11}\mathrm{B}(p,\gamma_{4.4}\gamma_{11.6})^{12}\mathrm{C}$	4.4, 11.6	weekly
Nuclear reaction	58 Ni $(n, \gamma_{9.0})^{59}$ Ni	9.0	daily
AmBe source	${}^{9}\text{Be}(\alpha_{241}\text{Am},n){}^{12}\text{C}_{*}$	4.4	daily
	$^{12}C_* \rightarrow ^{12}C\gamma_{4.4}$		

R.Sawada

MEG : Status and Upgrades

CLFV2013

Energy Scale Stability

- Absolute scale calibration
 - 55 MeV CEX gamma
- Time variation corrected using
 - 17.6 MeV CW gamma
 - 9 MeV Ni-n gamma
 - 4.4 MeV AmBe gamma
 - Cosmic ray peak

CLFV2013

R.Sawada

Resolution map

R.Sawada

Position resolution

Measured using lead collimators with CEX data

Timing resolution

CLFV20

Breakdown

Intrinsic	36 ps
ToF (depth)	20 ps
Electronics	24 ps
Position resolution and shower fluctuation	46 ps

R.Sawada

Positron - photon timing

- Radiative muon decay peak
 - In normal physics run
 - Corrected by small energy dependence

Timing resolution for signal is 122 ps

taking into account the energy dependence

CLFV20

New result from Run2009-2011

Data statistics

DAQ efficiency 87%→96% in 2011

R.Sawada

MEG : Status and Upgrades

= 22

CLFV2013

Improvements for the new result

2011 data

- Doubled the statistics
- Hardware modifications
 - Nal detector used for calorimeter calibration run was replaced with BGO
 - Laser tracker system for target and drift chamber initial alignment
- Improvements of analysis, applied for 2009-2011 data
 - Reconstruction improvements (next slide)
 - Physics analysis
 - per-event PDF for e⁺

MEG : Status and Upgrades

CLFV2

R.Sawada

MEG : Status and Upgrades

~~4

contour : signal PDF (39.3, 74.2, 86.5 %)

Time side-bands 2009-2011 data

R.Sawada

CLFV2013

Median upper limit of pseudo-experiments (MC) with backgroundonly hypothesis

R.Sawada

contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

MEG : Status and Upgrades

errors : MINOS 1.645σ 30 CLFV2013

Comparison with previous analysis

Previous analysis

New analysis

Change of UL by modifications of reconstruction algorithms. (MC)

High ranked events are stable
Differences of observables by modifications of reconstruction algorithms are smaller than resolutions.

CLFV2013

WILC: Status and Upgrades

R.Sawada

MEG : Status and Upgrades

No excess: N_{signal} best fit is -0.4^{+4.8}-1.9

contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

MEG : Status and Upgrades

errors : MINOS 1.645σ 33 CLFV2013

2009-2011 Fit Result

Unbinned likelihood fitting on 5 dimension observable data

Events / (56 psec) Events / (0.24 MeV) Events / (0.4 MeV E_e E_{γ} 250 120 300 150 200 100 40 100 50 20F 0**5**0 ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ Positron Energy (MeV) 50 52 54 56 Gamma Energy (MeV) 0.5 -0.5 48 Time (nsec) Events / (4 mrad) Events / (4 mrad 160 140 140 120 120 $N_{sig} = -0.4^{+4.8}$ -1.9 100 80 80 $N_{acc} = 2413.6 \pm 37$ 60 60 $_{40}$ $\mathcal{V}_{e\gamma}$ $\varphi_{e\gamma}$ **40** $N_{RMD} = 167.5 \pm 24$ 20 20F -40 -40 40 -20 20 40 -20 20 0 0 errors : MINOS 1.645 or θ (mrad) ϕ (mrad) 34

R.Sawada

MEG : Status and Upgrades

dotted line : 90% UL

CLFV2013

Signal

RMD

BG

Total

R.Sawada

MEG : Status and Upgrades

Expected final sensitivity

Data taking will be done until Summer 2013 Since 2012, 15% higher beam rate is used

Observed limits and sensitivity

MEG Upgrade

arXiv:1301.7225 [physics.ins-det]

The proposal was accepted by PSI

R.Sawada

MEG : Status and Upgrades

Spectrometer : Cylindrical drift chamber

R.Sawada

CLFV2013

Pixelated timing counter

Overall time resolution : 35 psec

CLFV2013

About half the resolutions compared to present timing-counter

R.Sawada

-Z

LXe gamma detector

12×12mm² SiPMs sensitive to LXe scintillation lights Development in progress

Present detector **Upgraded detector**

CLFV2013

Half the position resolutions About Half the energy resolution compared to present calorimeter

Energy response

52

54

50

shallow conversion

R.Sawada

Electronics

43

CLFV2013

Readout, HV and trigger are integrated on same board.

R.Sawada

Electronics

WaveDREAM board

- Put SiPM HV (70-210V) on boards
- Digitize all inputs continuously with 85 MHz/12 bit

CLFV20

 Upon trigger, read DRS through same ADC

- VME \rightarrow 3 HE 19" crates
 - Higher density
 - Cheaper
 - Faster
- "Added value" to DAQ boards
 - Switchable gain amplifiers
 - Second level trigger

256 Channels 5 GSPS/12 bits on a 3HE crate including trigger and SiPM high voltage

R.Sawada

Other possibilities

Active target

- Target made of 250µm plastic scintillation fibers
- Very precise measurements of muon decay position

Further improvement of spectrometer performance

Low momentum e⁺ detector

- Identify background γ from radiative muon decay
- Half of background γs are from radiative decays

Further background reduction

Hardware development ongoing

R.Sawada

R.Sawada

MEG : Status and Upgrades

46

CLFV2013

Data statistics in the future

R.Sawada

Expected performance and Sensitivity

	e
Ч	ZV
	3

PDF parameters	Present MEG	Upgrade scenario	ng ra	90% C.L.	MEG 2011	5σ			-
e ⁺ energy (keV)	306 (core)	130	chi	V		30			
$e^+ \theta$ (mrad)	9.4	5.3	E 10 ⁻¹²			909	% C.L.	Exclusion	n _
$e^+ \phi$ (mrad)	8.7	3.7	B	90% C.L.	MEG 2013				
e^+ vertex (mm) $Z/Y(core)$	2.4 / 1.2	1.6 / 0.7							·····-
γ energy (%) (w <2 cm)/(w >2 cm)	2.4 / 1.7	1.1 / 1.0							
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5		-					
γ -e ⁺ timing (ps)	122	84							_
Efficiency (%)			10^{-13}						
trigger	≈ 99	≈ 99							
γ	63	69							<u> </u>
e ⁺	40	88							
					Upgra	ded ME	G in 3 y	vears	
Soncitivity in throo		10-14	10⁻¹⁴				<u> </u>	9 0	11
Sensitivity in three	years . ~5			0 4	20 4	HU (DU	80	1' •

R.Sawada

MEG : Status and Upgrades

Conclusions

CLFV2

	C Related posters ————————————————————————————————————			
First $\mu \rightarrow e\gamma$ search with $O(10^{-13})$ sensitivity	"Measurement of inner Bremsstrahlung			
Sensitivity : 7.7×10 ⁻¹³	in polarized muon decay with MEG"	by Y. Uchiyama		
No ovcoss was found	R&D on the drift chamber for MEG upgrade	by L. Galli et al		
		by A. Lapa et al		
• 4 times stringent new limit : $\mathcal{B} < 5.7 \times 10^{-13}$	@ 90% C.L.			

- Data taking will be done until summer 2013
 - Double the statistics
 - Expected sensitivity : ~5×10⁻¹³
- Upgrade proposal was accepted, and R&D ongoing
 - More intense beam, double the efficiency and half the resolutions.
 - Expected sensitivity : ~5×10⁻¹⁴ in 3 years starting from 2016

Back up

Track reconstruction

R.Sawada

MEG : Status and Upgrades

51

Calibration and monitoring

R.Sawada

Calibration and monitoring

R.Sawada

Energy Scale Uniformity

- Non-uniformity due to
 - Geometry
 - Reconstruction algorithm
- Correction using
 - 17.6 MeV CW gamma for position
 - Monitored weekly
 - 55 MeV CEX gamma for depth (energy dependent)
- Checked using background gamma spectrum during physics run

After correction : ~0.2 % uniform

17.6 MeV CW data uniformity before correction

CLFV20

R.Sawada

MEG : Status and Upgrades

55

Alignment between detectors

- Optical survey
- Photon detector
 - PMT position scan using **AmBe source**
 - Calibration 17.6 MeV gamma, with lead collimators

Cosmic rays passing both systems

~1mm agreement in various methods

CLFV20

Signal : CEX data BG : Sideband data RMD : SM + detector response Signal : Michel e⁺ edge fitting BG : Sideband data RMD : SM + detector response

57

CLFV2013

R.Sawada

Probability density functions (PDF)

R.Sawada

MEG : Status and Upgrades

Normalization

R.Sawada

MEG : Status and Upgrades

Event distribution (previous analysis)

2009+2010 data ℬ < 2.4×10⁻¹²

R.Sawada

MEG : Status and Upgrades

<u>CLFV2013</u> 60
