Lepton Flavor Violation in Composite Higgs

Michele Redi

INFN
 L

1106.6357 (with A. Weiler)

+ 1203.4220
Lecce, 6 May
+ to appear

OUTLINE

- Composite Higgs Models
- LFV in anarchic scenarios
- MFV theories and composite leptons
- $\operatorname{SU}(2)$ theories

$\Lambda \sim M_{p}$

$m_{h}^{2}=100000000000000000000000000000.01 \mathrm{TeV}^{2}$
$-100000000000000000000000000000.00 \mathrm{TeV}^{2}$

$\Lambda \sim M_{p}$

$$
\begin{aligned}
m_{h}^{2} & =100000000000000000000000000000.01 \mathrm{TeV}^{2} \\
& -1000000000000000000000000000000.00 \mathrm{TeV}^{2}
\end{aligned}
$$

Natural theory:

$$
\Lambda \sim \mathrm{TeV}
$$

Naturalness hints to new dynamics at TeV scale:

- Weak Coupling: Supersymmetry

Naturalness hints to new dynamics at TeV scale:

- Weak Coupling:

Supersymmetry

- Strong Coupling: Techl' <color, Composite Higgs, Higgł<ess, Extra-diň<ensions ...

Higgs doublet could be a bound state

```
Strong sector: resonances + Higgs bound state
```


spin l
spin I/2
spin 0 Higgs doublet

Higgs doublet could be a bound state

```
Strong sector:
resonances +
Higgs bound state
```


spin l
spin I/2
spin 0 Higgs doublet

Compositeness scale acts as cut-off

$$
\delta m_{h}^{2} \sim \frac{g_{S M}^{2}}{16 \pi^{2}} m_{\rho}^{2}
$$

Natural theory

$$
\frac{1}{m_{\rho}} \sim \frac{1}{\mathrm{TeV}}=10^{-18} \mathrm{~m}
$$

Scalars automatically massless if they are Goldstone bosons

$$
\frac{G}{H}
$$

\# GB= $\operatorname{Dim}[\mathrm{G}]-\operatorname{Dim}[H]$

Scalars automatically massless if they are Goldstone bosons

$$
\frac{G}{H} \xrightarrow[\longrightarrow]{f>v} \quad \# \mathrm{~GB}=\operatorname{Dim}[\mathrm{G}]-\operatorname{Dim}[\mathrm{H}]
$$

Higgs could be an approximate GB

Georgi, Kaplan '80s

$\mathrm{GB}=4$

Many possibilities:

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}_{-\mathbf{2}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}-5+\overline{\mathbf{4}}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

Mrazek et al.,'।l
Deviations from SM:
$\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right)$

Deviations from SM:
 $$
\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right)
$$

Higgs is an angle,

$$
0<h<2 \pi f \quad \longrightarrow \quad \text { TUNING } \propto \frac{f^{2}}{v^{2}}
$$

$$
\text { Small Tuning } \quad f<T e V
$$

Spectrum:
\qquad

$$
m_{\rho}=g_{\rho} f
$$

Flavor:

- Bilinear couplings (a la technicolor)

$$
\frac{1}{\Lambda^{d-1}} \bar{q}_{L}\langle\mathcal{O}\rangle q_{R}
$$

Flavor:

- Bilinear couplings (a la technicolor)

$$
\frac{1}{\Lambda^{d-1}} \bar{q}_{L}\langle\mathcal{O}\rangle q_{R}
$$

- Linear couplings (partial compositeness)

$$
\begin{aligned}
y_{S M} & =\epsilon_{L} \cdot Y \cdot \epsilon_{R} \\
\epsilon & =\frac{\Delta}{m_{Q}}
\end{aligned}
$$

$\Delta_{R} \bar{q}_{R} \mathcal{O}_{L}+\Delta_{L} \bar{q}_{L} \mathcal{O}_{R}+Y \overline{\mathcal{O}}_{L} H \mathcal{O}_{R}$

Partial Compositeness

D. B. Kaplan '92 Grossman, Neubert '99 Huber '01

```
Strong sector:
Higgs + (top)
    m\rho
        g\rho
```

Elementary:
SM Fermions
+ Gauge Fields

Partial Compositeness

D. B. Kaplan '92

Grossman, Neubert '99 Huber '01

Elementary-composite states talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \xrightarrow{\epsilon \sim \frac{\lambda}{Y}} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
\end{gathered}
$$

Partial Compositeness

D. B. Kaplan '92

Grossman, Neubert '99 Huber '01

Elementary-composite states talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \xrightarrow{\epsilon \sim \frac{\lambda}{Y}} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
\end{gathered}
$$

Two scenarios:

- Anarchic
- Minimal Flavor Violation

Progress started with Randall-Sundrum constructions.

Different profiles generate hierarchies.
Dual to 4D CFTs through AdS-CFT.

Relevant physics largely independent from 5D. First resonance sufficient for practical purposes. Panico,Wulzer'।I de Curtis, MR,Tesi 'II

Relevant physics largely independent from 5D.
First resonance sufficient for practical purposes. Panico,Wulzer'।I de Curtis, MR,Tesi 'II

Bosons:

$$
A_{S M}^{\mu} \longrightarrow \rho^{\mu} \in \operatorname{Adj}[G] \quad \begin{gathered}
g_{\rho} \\
m_{\rho}
\end{gathered}
$$

Fermions:

m_{ψ}

ANARCHIC SCENARIO

For leptons see:
Agashe, Blechman, Petriello'06
Csaki et al.' ${ }^{\prime} 0$
Keren-Zur et al.' 12

Strong sector has no hierarchies

$$
Y^{U, D} \sim y_{*} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
$$

Strong sector has no hierarchies

$$
Y^{U, D} \sim y_{*} \quad y_{S M}=\epsilon_{L} \cdot Y \cdot \epsilon_{R}
$$

SM hierarchies are generated by the mixings:

- Light quarks elementary
- Top strongly composite

Flavor hierarchies can be dynamically generated if the composite sector is conformal.

- Flavor Protection

Resonance exchange generates 4-Fermi operators

$$
\sim \frac{g_{\rho}^{2}}{m_{\rho}^{2}}
$$

$\Delta F=2$ transitions generated by mixing

$$
\epsilon_{L}^{i} \epsilon_{L}^{j} \epsilon_{R}^{k} \epsilon_{R}^{l} \times \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \times\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\left(\bar{d}_{R}^{k} \gamma_{\mu} d_{R}^{l}\right)\right.
$$

FCNC of the light generation are suppressed by the mixings.

Flavor superior to TC theories but not perfect.

$$
C_{4}^{K} \bar{d}_{R}^{\alpha} s_{L}^{\alpha} \bar{d}_{L}^{\beta} s_{R}^{\beta} \quad C_{4}^{K} \sim \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \frac{m_{d} m_{s}}{v^{2}}
$$

$$
m_{\rho}>20 \mathrm{TeV}
$$

Flavor superior to TC theories but not perfect.

$$
C_{4}^{K} \bar{d}_{R}^{\alpha} s_{L}^{\alpha} \bar{d}_{L}^{\beta} s_{R}^{\beta} \quad C_{4}^{K} \sim \frac{g_{\rho}^{2}}{m_{\rho}^{2}} \frac{m_{d} m_{s}}{v^{2}}
$$

$$
m_{\rho}>20 \mathrm{TeV}
$$

Also:

- EDMs:

$$
m_{\psi}>2 y_{*} \mathrm{TeV}
$$

- b-> s gamma, ...

Marginally consistent in the quark sector

Extension to leptons in principle trivial. Simplest option vectorial copy of SM.

$$
\begin{aligned}
& L=\binom{N}{E} \quad \tilde{L}=\binom{\tilde{N}}{\tilde{E}} \\
& \mathcal{L}_{\text {comp }}=m_{L} \bar{L} L+m_{\tilde{L}} \overline{\tilde{L}} \tilde{L}+y_{*} \bar{L} H \tilde{L}
\end{aligned}
$$

$$
\mathcal{L}_{\text {mixing }}=\Delta_{L} \bar{l}_{L} L_{R}+\Delta_{e} \overline{\tilde{E}}_{L} e_{R}+\Delta_{\nu} \tilde{\tilde{N}}_{L} \nu_{R}
$$

Extension to leptons in principle trivial. Simplest option vectorial copy of SM.

$$
\begin{aligned}
& L=\binom{N}{E} \quad \tilde{L}=\binom{\tilde{N}}{\tilde{E}} \\
& \mathcal{L}_{\text {comp }}=m_{L} \bar{L} L+m_{\tilde{L}} \overline{\tilde{L}} \tilde{L}+y_{*} \bar{L} H \tilde{L}
\end{aligned}
$$

$$
\mathcal{L}_{\text {mixing }}=\Delta_{L} \bar{l}_{L} L_{R}+\Delta_{e} \overline{\tilde{E}}_{L} e_{R}+\Delta_{\nu} \overline{\tilde{N}}_{L} \nu_{R}
$$

See-saw

$$
\begin{gathered}
M_{i j} \nu_{R}^{i} \nu_{R}^{j} \\
m_{\nu}=v^{2} \epsilon_{L} \cdot Y_{e} \cdot \epsilon_{R \nu} \cdot M^{-1} \cdot \epsilon_{R \nu}^{T} \cdot Y_{\nu}^{T} \cdot \epsilon_{L}^{T}
\end{gathered}
$$

Dipoles:

$$
\left(\frac{y_{*}}{4 \pi}\right)^{2} \frac{e}{m_{\psi}^{2}}\left(\frac{\epsilon_{L}^{\mu}}{\epsilon_{L}^{e}} m_{e} \bar{\mu}_{L} \sigma^{\mu \nu} e_{R}+\frac{\epsilon_{L}^{e}}{\epsilon_{L}^{\mu}} m_{\mu} \bar{e}_{L} \sigma^{\mu \nu} \mu_{R}\right) F_{\mu \nu}
$$

Dipoles:

$$
\left(\frac{y_{*}}{4 \pi}\right)^{2} \frac{e}{m_{\psi}^{2}}\left(\frac{\epsilon_{L}^{\mu}}{\epsilon_{L}^{e}} m_{e} \bar{\mu}_{L} \sigma^{\mu \nu} e_{R}+\frac{\epsilon_{L}^{e}}{\epsilon_{L}^{\mu}} m_{\mu} \bar{e}_{L} \sigma^{\mu \nu} \mu_{R}\right) F_{\mu \nu}
$$

Most favorable choice:

$$
\frac{\epsilon_{L}^{i}}{\epsilon_{L}^{j}} \sim \frac{\epsilon_{R}^{i}}{\epsilon_{R}^{j}} \sim \sqrt{\frac{m_{i}}{m_{j}}} \quad \longrightarrow \quad e\left(\frac{y_{*}}{4 \pi}\right)^{2} \frac{\sqrt{m_{e} m_{\mu}}}{m_{\psi}^{2}} \bar{\mu} \sigma^{\mu \nu} e F_{\mu \nu}
$$

Estimate:

$$
\operatorname{Br}(\mu \rightarrow e \gamma) \sim 5 \times\left(\frac{y^{*}}{3}\right)^{4} \times\left(\frac{3 \mathrm{TeV}}{m_{\psi}}\right)^{4} \times 10^{-8}
$$

MEG, 'I3

$$
\operatorname{Br}(\mu \rightarrow e \gamma)<5 \times 10^{-13} \quad \longrightarrow \quad y_{*} \sim .1!!!
$$

Estimate:

$$
\operatorname{Br}(\mu \rightarrow e \gamma) \sim 5 \times\left(\frac{y^{*}}{3}\right)^{4} \times\left(\frac{3 \mathrm{TeV}}{m_{\psi}}\right)^{4} \times 10^{-8}
$$

MEG,'I3

$$
\operatorname{Br}(\mu \rightarrow e \gamma)<5 \times 10^{-13} \longrightarrow \quad y_{*} \sim .1!!!
$$

Flavor violating Z-couplings

$$
\frac{\delta g_{L}}{g_{L}} \sim \frac{g_{\rho}^{2} v^{2}}{m_{\rho}^{2}} \epsilon_{L} \epsilon_{L}^{\dagger}
$$

$$
\operatorname{Br}(\mu \rightarrow e e e) \sim\left(\frac{g_{\rho}^{2}}{3 y_{*}}\right)^{2} \times\left(\frac{3 \mathrm{TeV}}{m_{\rho}}\right)^{4} \times 10^{-13}
$$

$$
\begin{gathered}
y_{*}=3 \\
m_{\chi}=3 \mathrm{TeV}
\end{gathered}
$$

	L_{1}	$\mathrm{~L}_{2}$	EXP	
$\operatorname{Br}(\mu \rightarrow e \gamma)$	$5 \cdot 10^{-8}$	10^{-6}	$5 \cdot 10^{-13}$	
$\operatorname{Br}(\tau \rightarrow e \gamma)$	10^{-9}	10^{-7}	$3 \cdot 10^{-8}$	
$\operatorname{Br}(\tau \rightarrow \mu \gamma)$	10^{-7}	10^{-6}	$4 \cdot 10^{-8}$	$L_{1}: "$ Optimal"
$\operatorname{Br}(\mu \rightarrow 3 e)$	10^{-13}	10^{-12}	10^{-12}	
$\operatorname{Br}(\tau \rightarrow 3 e)$	10^{-13}	10^{-12}	$3 \cdot 10^{-8}$	$L_{2}: \epsilon_{L}=(.01, .02, .025)$
$\operatorname{Br}(\tau \rightarrow 3 \mu)$	$5 \cdot 10^{-11}$	10^{-12}	$2 \cdot 10^{-8}$	

Anarchic scenarios don't fit well leptons!

MFV SCENARIO

MR and A. Weiler, 1106.6357

+ work in progress

See also:
Weiler et al. '07
Barbieri, Isidori, Pappadopulo ’08
Delaunay et al.'II

Adding a flavor symmetry:

Adding a flavor symmetry:

Simple realizations of Minimal FlavorViolation:

mixings ~ SMYukawas

- Left-handed compositeness

$\epsilon_{L} \propto \mathrm{Id}$
$\epsilon_{R u} \propto y_{u} \quad \epsilon_{R d} \propto y_{d}$

- Right-handed compositeness
$\epsilon_{L u} \propto y_{u}$
$\epsilon_{L d} \propto y_{d}$

$$
\epsilon_{R u} \propto \operatorname{Id} \quad \epsilon_{R d} \propto \mathrm{Id}
$$

$+$ $S U(3)_{U} \otimes S U(3)_{D}$

$$
+\quad S U(3)_{F}
$$

- Left-handed compositeness
$\epsilon_{L} \propto \mathrm{Id}$

$$
\epsilon_{R u} \propto y_{u} \quad \epsilon_{R d} \propto y_{d}
$$

$$
+\quad S U(3)_{F}
$$

- Right-handed compositeness

$\epsilon_{L u} \propto y_{u}$	$\epsilon_{L d} \propto y_{d}$		
$\epsilon_{R u} \propto \mathrm{Id}$	$\epsilon_{R d} \propto$ Id		

Mixing of one chirality of
light quarks is large.

L-compositeness constrained by precision tests

$$
\begin{gathered}
R_{h}=\frac{\Gamma(Z \rightarrow q \bar{q})}{\Gamma(Z \rightarrow \mu \bar{\mu})}=20.767 \pm .025 \\
\frac{\delta g_{L u}}{g_{L u}}<.002
\end{gathered} \frac{y_{*}^{2} v^{2}}{m_{\chi}^{2}} \epsilon_{L}^{2}<0.002
$$

L-compositeness constrained by precision tests

$$
\begin{aligned}
& R_{h}=\frac{\Gamma(Z \rightarrow q \bar{q})}{\Gamma(Z \rightarrow \mu \bar{\mu})}=20.767 \pm .025 \\
& \frac{\delta g_{L u}}{g_{L u}}<.002 \quad \frac{y_{*}^{2} v^{2}}{m_{\chi}^{2}} \epsilon_{L}^{2}<0.002
\end{aligned}
$$

R-compositeness constrained by LHC flavor

$$
\begin{gathered}
\mathcal{L}_{4-F e r m i}=\frac{2 \pi}{\Lambda^{2}}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right)^{2} \\
\frac{g_{\rho}^{2}}{4 m_{\rho}^{2}} \epsilon_{R}^{4}\left(\bar{q}_{R \alpha}^{i} \gamma^{\mu} q_{R \beta}^{i} \bar{q}_{R \beta}^{j} \gamma_{\mu} q_{R \alpha}^{j}\right) \quad \xrightarrow{\text { COMPOSITENESS }}
\end{gathered} \epsilon_{R}^{2} \leq \frac{2}{g_{\rho}}\left(\frac{m_{\rho}}{3 \mathrm{TeV}}\right)
$$

Exciting phenomenology with RH compositeness: proton could be almost half composite!

Gluon resonances:

Leptons: we focus on L-compositeness

$$
\epsilon_{L} \propto \mathrm{Id}
$$

Compositeness can be small

$$
\epsilon_{L}=\frac{m_{\tau}}{y_{*} v \epsilon_{R \tau}} \quad \epsilon_{L}>\frac{1}{100 y_{*}}
$$

Leptons: we focus on L-compositeness

$$
\epsilon_{L} \propto \mathrm{Id}
$$

Compositeness can be small

$$
\epsilon_{L}=\frac{m_{\tau}}{y_{*} v \epsilon_{R \tau}} \quad \longrightarrow \quad \epsilon_{L}>\frac{1}{100 y_{*}}
$$

Consistent with

$$
y_{*}>1
$$

CLFV as in the SM. No deviations expected.

Muon g-2

$$
\delta_{g-2}^{\mu} \sim\left(\frac{y_{*}}{4 \pi}\right)^{2} \frac{m_{\mu}^{2}}{m_{\psi}^{2}}
$$

Anomaly ($2 \times 10^{\wedge}-9$),

$$
m_{\psi} \sim y_{*} \times 150 \mathrm{GeV}
$$

Muon g-2

$$
\delta_{g-2}^{\mu} \sim\left(\frac{y_{*}}{4 \pi}\right)^{2} \frac{m_{\mu}^{2}}{m_{\psi}^{2}}
$$

Anomaly ($2 \times 10^{\wedge}-9$),

$$
m_{\psi} \sim y_{*} \times 150 \mathrm{GeV}
$$

Suggests light leptons.
Other anomalies predicted

$$
\delta_{g-2}^{e}=\delta_{g-2}^{\mu} \frac{m_{e}^{2}}{m_{\mu}^{2}}
$$

No EDM if strong sector respects CP

Indirect bounds:

- "compositeness"

$$
\begin{array}{cl}
\frac{2 \pi}{\Lambda^{2}}\left(\bar{l} \gamma_{\mu} l\right)^{2} & \Lambda>10 \mathrm{TeV} \\
\frac{g_{\rho}^{2}}{m_{\rho}^{2}} \epsilon_{L}^{4} \quad \longrightarrow & \epsilon_{L}^{2}<\frac{1}{4 g_{\rho}} \times \frac{m_{\rho}}{3 \mathrm{TeV}}
\end{array}
$$

- Excited leptons

$$
\begin{array}{lc}
\frac{1}{\Lambda} \bar{l}_{R} \sigma^{\mu \nu}\left[g \frac{\tau^{a}}{2} W_{\mu \nu}^{a}+g^{\prime} \frac{Y}{2} B_{\mu \nu} l_{L}\right] F_{\mu \nu} & \text { Atlas } 1201.3293 \\
\hline>2 \mathrm{TeV}
\end{array}
$$

Weak bound if loop generated.

- Z-couplings

$$
\begin{aligned}
R_{h}= & \frac{\Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=20.0767 \pm 0.25 \longrightarrow \frac{\delta g_{Z \mu \bar{\mu}}}{g_{Z \mu \bar{\mu}}}<0.002 \\
& \frac{\delta g_{Z \mu \bar{\mu}}}{g_{Z \mu \bar{\mu}}} \sim \frac{y_{*}^{2} v^{2}}{m_{\psi}^{2}} \epsilon_{L}^{2} \quad \longrightarrow \quad \epsilon_{L}<\frac{1}{10 y_{*}}\left(\frac{m_{\psi}}{500 \mathrm{GeV}}\right)
\end{aligned}
$$

- Z-couplings

$$
\begin{aligned}
R_{h}= & \frac{\Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=20.0767 \pm 0.25 \longrightarrow \frac{\delta g_{Z_{\mu \bar{\mu}}}}{g_{Z \mu \bar{\mu}}}<0.002 \\
& \frac{\delta g_{Z \mu \bar{\mu}}}{g_{Z \mu \bar{\mu}}} \sim \frac{y_{*}^{2} v^{2}}{m_{\psi}^{2}} \epsilon_{L}^{2} \quad \longrightarrow \quad \epsilon_{L}<\frac{1}{10 y_{*}}\left(\frac{m_{\psi}}{500 \mathrm{GeV}}\right)
\end{aligned}
$$

Lepton flavor universality automatic.

$$
\hat{T} \sim \frac{y_{*}^{4} \epsilon_{R}^{4}}{16 \pi^{2}} \frac{v^{2}}{m_{\psi}^{2}}
$$

Only relevant for τ

Type III see-saw
(ATLAS-CONF-2013-019)

Massive $\mathrm{SU}(2)$ triplet, $\quad N_{+}, N_{-}, N_{0}$

Sensitive to:

$$
\sigma\left(p p \rightarrow N_{ \pm} N_{0}\right) \times \operatorname{Br}\left(N_{ \pm} \rightarrow Z l\right) \times \operatorname{Br}\left(N_{0} \rightarrow l \nu\right)
$$

With composite leptons

$$
\begin{gathered}
\Gamma[E \rightarrow Z l]=\Gamma[E \rightarrow h l]=\frac{1}{2} \Gamma[N \rightarrow W l]=\frac{y_{*}^{2} \epsilon_{R}^{2}}{32 \pi} m_{\psi} \\
\sigma(p p \rightarrow E \bar{E})^{P . C} \approx \frac{1}{2} \sigma\left(p p \rightarrow N_{ \pm} N_{0}\right)^{I I I}
\end{gathered}
$$

Exclusion:

$$
\frac{[\sigma \times \mathrm{Br}]^{P . C .}}{[\sigma \times \mathrm{Br}]^{I I I}} \sim 2 \quad \longrightarrow \quad m_{\psi}>300 \mathrm{GeV}
$$

CMS-1210.1797

More work to be done at LHC !

Beyond MFV

Top mass suggest splitting third family

Beyond MFV

Top mass suggest splitting third family

Light generations can be more elementary. For quarks equally good as MFV but much weaker bounds from precision tests.

Same structure inherited by leptons.

Lepton flavor universality:

Channel	$\Delta r^{\mu / \tau}$
$\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}\right) / \Gamma\left(\tau \rightarrow \pi \nu_{\tau}\right)$	$0.016 \pm 0.008[14]$
$\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}\right) / \Gamma\left(\tau \rightarrow K \nu_{\tau}\right)$	$0.037 \pm 0.016[14]$
$\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right) / \Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)$	$-0.0011 \pm 0.0034[15-18]$
$\Gamma\left(W \rightarrow \mu \bar{\nu}_{\mu}\right) / \Gamma\left(W \rightarrow \tau \bar{\nu}_{\tau}\right)$	$-0.060 \pm 0.021[15-18]$
$\Gamma\left(\mu \rightarrow \nu_{\mu} e \bar{\nu}_{e}\right) / \Gamma\left(\tau \rightarrow \nu_{\tau} e \bar{\nu}_{e}\right)$	$-0.0014 \pm 0.0044[14]$
Channel	$\Delta r^{e / \tau}$
$\Gamma\left(Z \rightarrow e^{+} e^{-}\right) / \Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)$	$-0.0020 \pm 0.0030[15-18]$
$\Gamma\left(W \rightarrow e \bar{\nu}_{e}\right) / \Gamma\left(W \rightarrow \tau \bar{\nu}_{\tau}\right)$	$-0.044 \pm 0.021[15-18]$
$\Gamma\left(\mu \rightarrow \nu_{\mu} e \bar{\nu}_{e}\right) / \Gamma\left(\tau \rightarrow \nu_{\tau} \mu \bar{\nu}_{\mu}\right)$	$-0.0032 \pm 0.0042[14]$

from Isidori, Giudice, Paradisi 'I2

Table 1: Experimental constraints on $\Delta r^{e / \tau}$ and $\Delta r^{\mu / \tau}$.

$$
y_{*}^{2} v^{2} \Delta\left[\frac{\epsilon_{L}^{2}}{m_{\psi}^{2}}\right]<\text { few } \times 10^{-3} \longrightarrow \quad \epsilon_{L}^{\tau}<\frac{1}{10 y_{*}}\left(\frac{m_{\psi}}{500 \mathrm{GeV}}\right)
$$

Ex:

$$
\begin{array}{ll}
L_{1}: & \epsilon_{L}=(0.05,0.05,0.1) \\
L_{2}: & \epsilon_{L}=(0.01,0.01,0.1)
\end{array}
$$

	L_{1}	$\mathrm{~L}_{2}$	EXP
$\operatorname{Br}(\mu \rightarrow e \gamma)$	10^{-9}	10^{-12}	$5 \cdot 10^{-13}$
$\operatorname{Br}(\tau \rightarrow e \gamma)$	10^{-8}	10^{-9}	$3 \cdot 10^{-8}$
$\operatorname{Br}(\tau \rightarrow \mu \gamma)$	10^{-8}	10^{-10}	$4 \cdot 10^{-8}$
$\operatorname{Br}(\mu \rightarrow 3 e)$	10^{-12}	10^{-15}	10^{-12}
$\operatorname{Br}(\tau \rightarrow 3 e)$	10^{-10}	10^{-12}	$3 \cdot 10^{-8}$
$\operatorname{Br}(\tau \rightarrow 3 \mu)$	10^{-10}	10^{-12}	$2 \cdot 10^{-8}$

LFV can be observable!

CONCLUSIONS

- Absence of CLFV is at odds with anarchic flavor structure in composite Higgs models.

CONCLUSIONS

- Absence of CLFV is at odds with anarchic flavor structure in composite Higgs models.
- No CLFV in MFV scenario, fermions can be light. In $S \cup(2)$ extensions possible flavor effects.

CONCLUSIONS

- Absence of CLFV is at odds with anarchic flavor structure in composite Higgs models.
- No CLFV in MFV scenario, fermions can be light. In $S \cup(2)$ extensions possible flavor effects.
- Interesting interplay of g-2, collider and CLFV.

In SM only one flavor and CP structure:

$$
S U(3)_{L} \otimes S U(3)_{U} \otimes S U(3)_{D} \quad \begin{aligned}
& y_{u}=(3, \overline{3}, 1) \\
& y_{d}=(3,1, \overline{3})
\end{aligned} \longrightarrow \quad V_{C K M}
$$

In SM only one flavor and CP structure:

$$
S U(3)_{L} \otimes S U(3)_{U} \otimes S U(3)_{D} \quad \begin{aligned}
& y_{u}=(3, \overline{3}, 1) \\
& y_{d}=(3,1, \overline{3})
\end{aligned} \longrightarrow \quad V_{C K M}
$$

In Composite Higgs:

$$
S U(3)_{e l}^{3} \otimes S U(3)_{c o m p}^{4}
$$

$$
\begin{array}{ll}
\lambda_{L u}=(3,1,1, \overline{3}, 1,1,1) & \lambda_{R u}=(1, \overline{3}, 1,1,1,3,1) \\
\lambda_{L d}=(3,1,1,1, \overline{3}, 1,1) & \lambda_{R d}=(1,1, \overline{3}, 1,1,1,3) \\
Y_{u}=(1,1,1,1,3, \overline{3}, 1) & Y_{d}=(1,1,1,1,3,1, \overline{3})
\end{array}
$$

In SM only one flavor and CP structure:

$$
S U(3)_{L} \otimes S U(3)_{U} \otimes S U(3)_{D} \quad \begin{aligned}
& y_{u}=(3, \overline{3}, 1) \\
& y_{d}=(3,1, \overline{3})
\end{aligned} \quad \longrightarrow \quad V_{C K M}
$$

In Composite Higgs:

$$
S U(3)_{e l}^{3} \otimes S U(3)_{c o m p}^{4}
$$

$$
\begin{array}{ll}
\lambda_{L u}=(3,1,1, \overline{3}, 1,1,1) & \lambda_{R u}=(1, \overline{3}, 1,1,1,3,1) \\
\lambda_{L d}=(3,1,1,1, \overline{3}, 1,1) & \lambda_{R d}=(1,1, \overline{3}, 1,1,1,3) \\
Y_{u}=(1,1,1,1,3, \overline{3}, 1) & Y_{d}=(1,1,1,1,3,1, \overline{3})
\end{array}
$$

Anarchic scenario:

$$
12-7=5 \quad \text { Flavor Structures }
$$

Too much flavor violation!

Similar bound is found from unitarity of CKM

$$
\begin{aligned}
& \left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} \approx 1-.7 \frac{\delta g_{L u}}{g_{L u}} \\
& \left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=.9999 \pm .0012
\end{aligned}
$$

Similar bound is found from unitarity of CKM

$$
\begin{aligned}
& \left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} \approx 1-.7 \frac{\delta g_{L u}}{g_{L u}} \\
& \left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=.9999 \pm .0012
\end{aligned}
$$

Left-Handed Compositeness:

$$
\delta g \sim \frac{Y^{2} v^{2}}{2 m_{\rho}^{2}} \sin \varphi_{q}^{2}
$$

$$
\frac{\delta g_{L u}}{g_{L u}}<.002
$$

$$
\sin \varphi_{t_{R}} \geq 35 \frac{m_{t}}{m_{\rho}}
$$

Strongly constrained and only possible if $t R$ is composite.

Higgs cannot be exact NGB

$$
h \rightarrow h+c
$$

G

G symmetry broken explicitly in SM

$$
\lambda_{i j}^{u} \bar{q}_{L}^{i} H^{c} u_{R}^{j}+\lambda_{i j}^{d} \bar{q}_{L}^{i} H d_{R}^{j}+h . c .
$$

$$
\left|\partial_{\mu} H+i A_{\mu} H\right|^{2}
$$

Higgs cannot be exact NGB

$$
h \rightarrow h+c
$$

G symmetry broken explicitly in SM

$$
\lambda_{i j}^{u} \bar{q}_{L}^{i} H^{c} u_{R}^{j}+\lambda_{i j}^{d} \bar{q}_{L}^{i} H d_{R}^{j}+\text { h.c. }
$$

$$
\begin{equation*}
\left|\partial_{\mu} H+i A_{\mu} H\right|^{2} \tag{2}
\end{equation*}
$$

Similar to QCD:

$$
U(2)_{L} \times U(2)_{R}
$$

$U(1)_{e m} \times U(1)$

Bump-hunter search
MR, Sanz, de Vries, Weiler, 1305.xxxx

