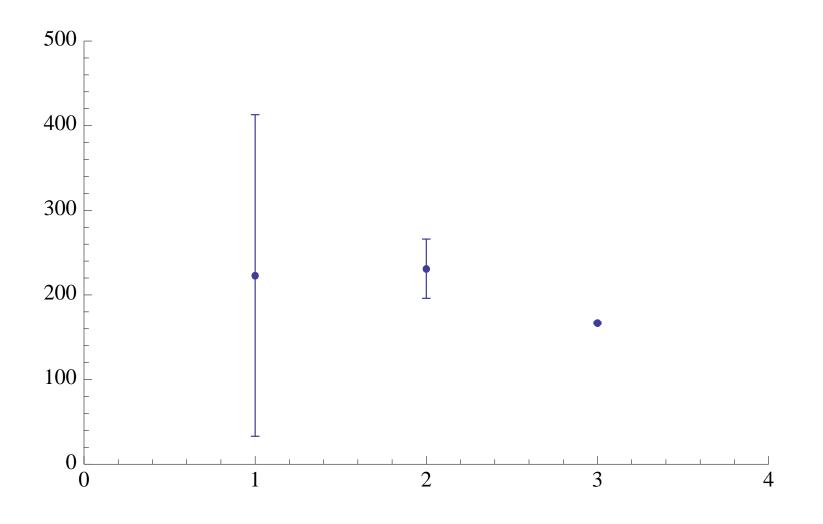
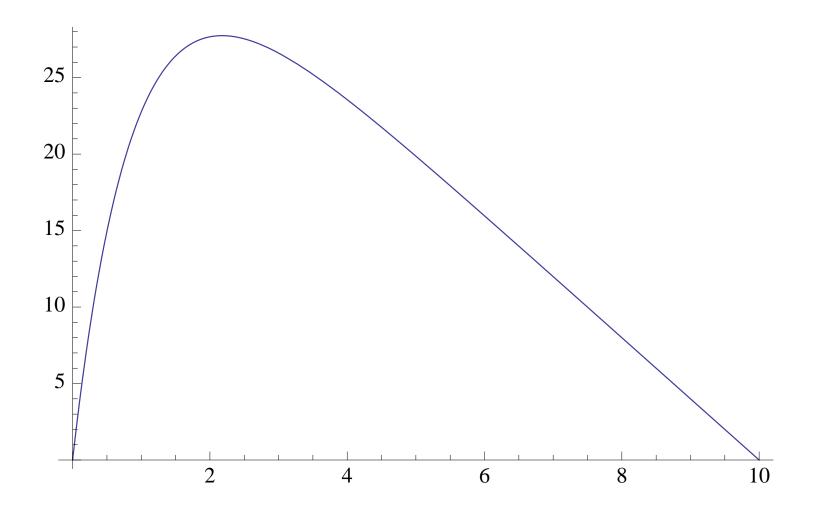
Theory of charged leptons


Yuval Grossman

Cornell

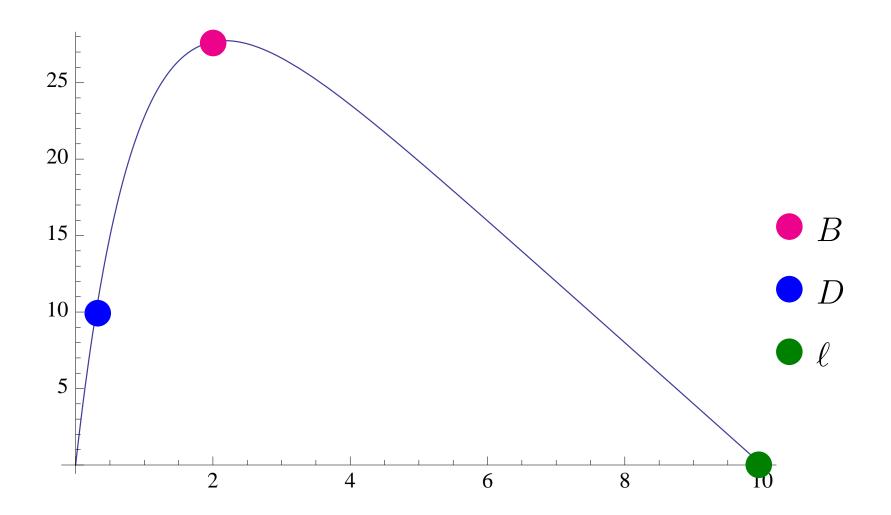
Y. Grossman

Charged lepton theory


Why charged leptons?

Y. Grossman

Charged lepton theory


Why charged leptons? (again)

Y. Grossman

Charged lepton theory

Why charged leptons? (again)

Y. Grossman

Charged lepton theory

Outline

- A general view on particle physics
- Synergy within charged leptons
- Probing the lepton sector with neutrinos
- Probing the flavor sector with quarks
- Probing new physics together with the rest of the world

$$e \mu \tau$$

Y. Grossman

Charged lepton theory

The big picture

Charged lepton theory

Why do we think there is NP?

Two types of reasons: data and beauty

- Data
 - Dark matter
 - Baryogenesis
 - Neutrino masses (?)
- Beauty
 - Cosmological constant
 - Hierarchy problem
 - Flavor hierarchy problem(s)
 - The strong CP problem
 - All the hints for a GUT

The simple flavor problem

Y. Grossman

Charged lepton theory

Why flavor?

Flavor is interesting

- Fermion masses are (mainly) small and hierarchical
- FCNCs are very small
- The charged current is universal
- Quark mixing angles are small and hierarchical
- The patterns of leptons and quark flavors are different

Flavor seems to have a lot to tell us

Charged lepton theory

The new physics flavor problem

The SM flavor puzzle: why the masses and mixing angles exhibit hierarchy. This is not what we refer to here

The SM flavor structure is special

- Universality of the charged current interaction
- FCNCs are highly suppressed

Any NP model must reproduce these successful SM features

The new physics flavor scale

• K physics:
$$\epsilon_K$$

$$\frac{s\overline{d}s\overline{d}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^5 \text{ TeV}$$

• Charged leptons: $\mu \to e\gamma$, $\mu \to e$, etc.

$$\frac{\mu \overline{e} f \overline{f}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^3 \text{ TeV}$$

- There is no exact symmetry that can forbid such operators
- All other bounds on NP, like proton decay, maybe due to exact symmetry

Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \text{ TeV}$
- Flavor bounds $\Rightarrow \Lambda > 10^5 \text{ TeV}$

This tension is the NP flavor problem

Any TeV scale NP has to deal with the flavor bounds $\downarrow \downarrow$ Such NP cannot have a generic flavor structure

Where is the tail?

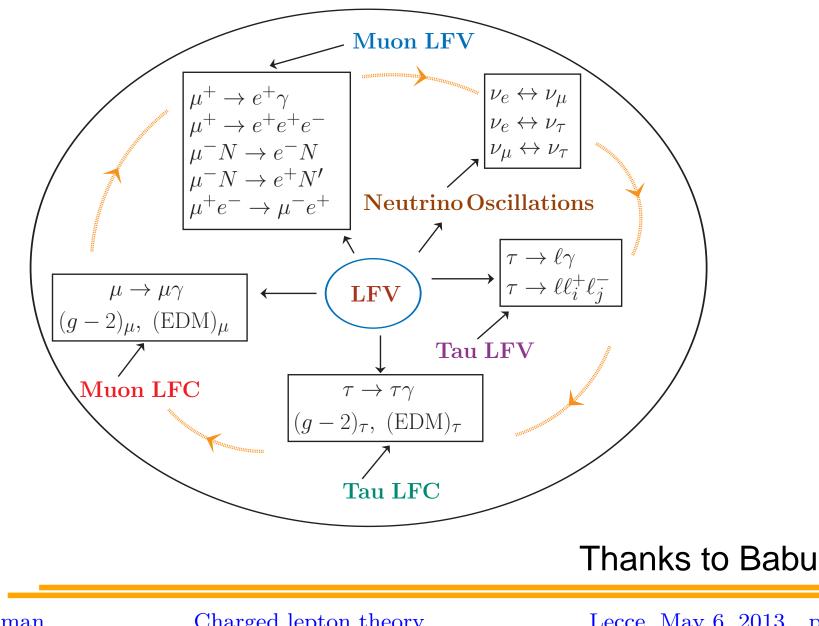
Y. Grossman

Charged lepton theory

Solution to the NP flavor problem

- No NP at the TeV
- There must be a structure in the TeV NP
 - Degeneracy
 - Alignment
 - Only top partners are light

Even if we find NP at the LHC, we have a problem: the inverse LHC problem


We need flavor physics in either way

Synergy within charged leptons

Charged lepton theory

The very basic of charged leptons

Y. Grossman

Charged lepton theory

Basic ideas

- No (or very small) hadronic uncertainties
- In many cases there is no "SM background"
- Large diversity of processes

$$g - 2, \quad \mu \to e\gamma, \quad \mu \to eee,$$

$$\mu^{-} + A \to e^{-} + A, \quad \mu^{-} + A \to e^{+} + A', \quad \mu^{+}e^{-} \to \mu^{-}e^{+},$$

$$\tau \to e\gamma, \quad \tau \to \mu\gamma, \quad \tau \to eee,$$

$$\tau \to \mu\mu\mu, \quad \tau^{+} \to e^{+}\mu^{+}\mu^{-}, \quad \tau^{+} \to \mu^{+}e^{+}e^{-},$$

$$\tau \to \mu\pi, \quad \tau \to e\pi, \quad \tau \to \mu K_S,$$

and more

Y. Grossman

Charged lepton theory

The program

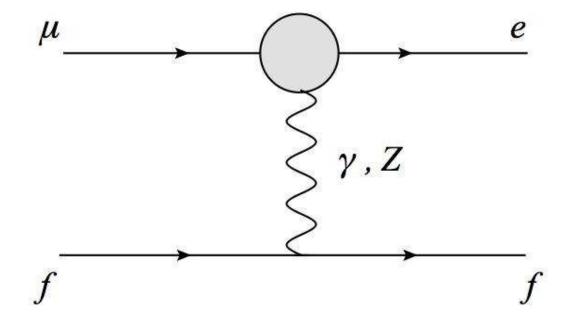
- A lot of related measurements
- This is similar to LHC or B factories, but
 - Multi-purpose experiments have one big apparatus and many analyses that are interconnected
 - Charged leptons experiments are smaller, but all of them together have much to probe
- Huge improvements in probing power are possible
 - The next 10-20 years we can improve different bounds by 2-5 orders of magnitude
 - Basically no theoretical uncertainties

Charged leptons and children

What I had in my fortune cookie:

Charged lepton processes are like your children:

they have a lot in common and you love them all but each is very different and together it is much more fun

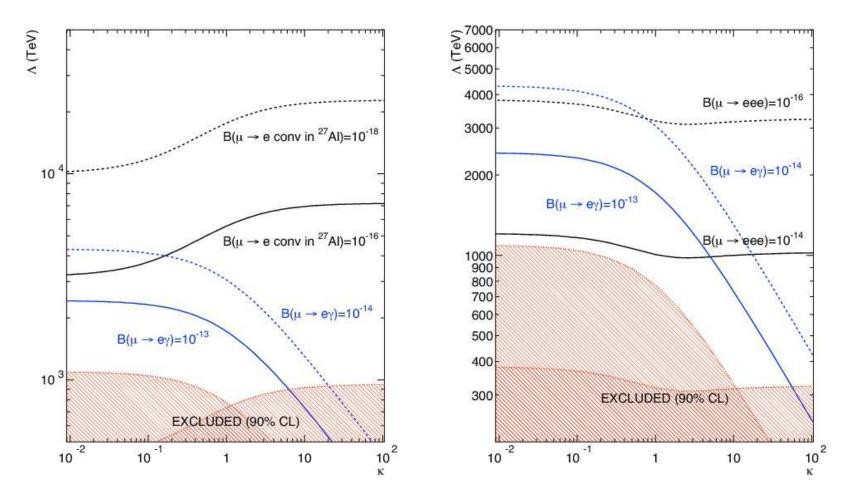


Y. Grossman

Charged lepton theory

Interplay within the charged leptons

- There are many operators. Each mode is sensitive to a different set of them
- Example: $\mu \to e\gamma$ vs $\mu \to eee$ vs $\mu \to e$ conversion

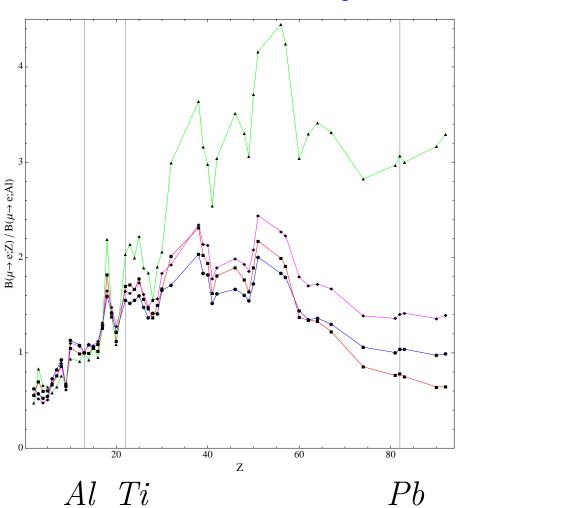


Y. Grossman

Charged lepton theory

Discriminating power

DeGouvea, Vogel, 2013

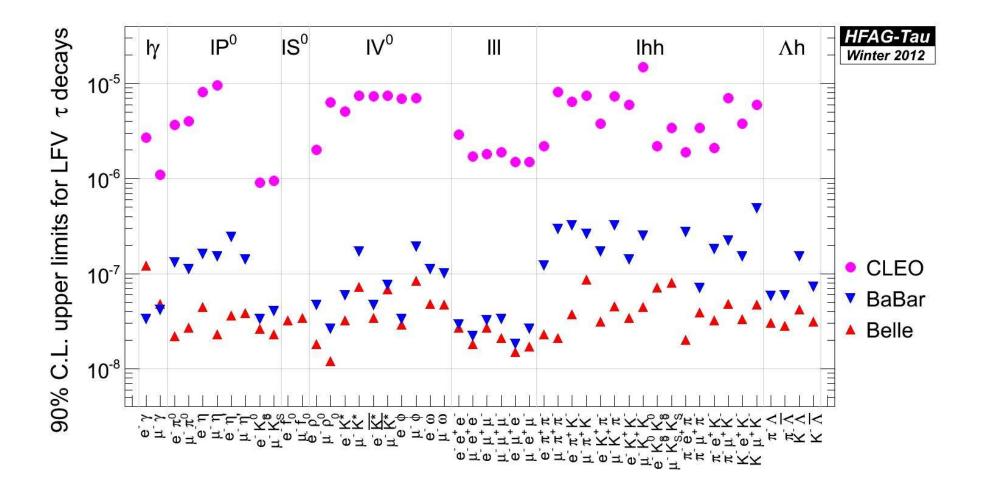


 $\kappa \sim C_1/C_2$ ratio of two operators

Y. Grossman

Charged lepton theory

The power of $\mu \rightarrow e$



Cirigliano, Kitano, Okada, Tuzon, 2009

Y. Grossman

Charged lepton theory

Similar story for taus

Y. Grossman

Charged lepton theory

Relation to neutrinos

Charged lepton theory

Symmetries

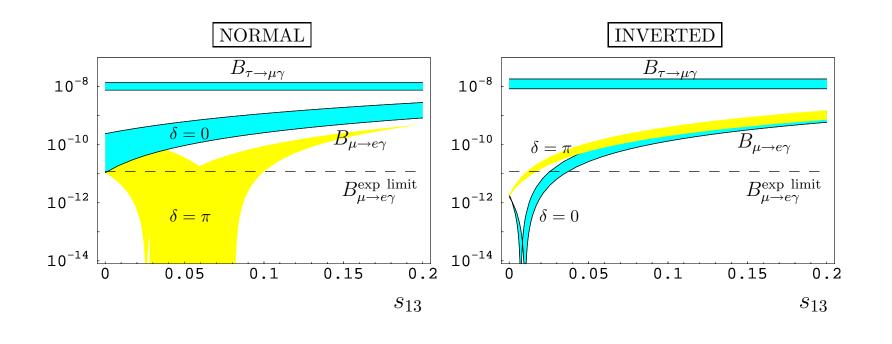
Both charged leptons and neutrinos probe LFV, but they probe different operators

- Neutrino masses arise from the dim-5 LLHH operator
- Charged leptons processes probe dim-6 operators, for example, μeee
- The fact that we established $m_{\nu} \neq 0$ implies that lepton flavor is a broken symmetry
- We promote the SM into the ν SM

Charged leptons and neutrinos

- neutrino oscillations imply the breaking of lepton flavor symmetry
- Thus, we must have CLFV
- If all the breaking is from he operator that give neutrino masses, charged lepton flavor violation is tiny

$$\Gamma(\mu \to e\gamma) \propto \left(\frac{m_{\nu}}{m_W}\right)^4 \sim 10^{-54}$$


More generally, if the scale of the dim-5 and dim-6 operators is the same, CLFV is tiny

CLFV probes physics beyond the ν SM

Model relations

- While the operators for masses and CLFV decays are different they can be the same in specific models
- GUT, lepton MFV, RS, ...
- Example of MFV

Cirigliano, Grinstein, Isidori, Wise, 2005

Y. Grossman

Charged lepton theory

$B\nu SM$, CLFV and NSI

If we find $\tau \rightarrow eee$, will it affect neutrino oscillation?

$B\nu SM$, CLFV and NSI

If we find $\tau \rightarrow eee$, will it affect neutrino oscillation?

- Neutrino oscillations are sensitive to Non Standard Interactions (NSIs)
- They can show up in matter effects or in the production or detection processes
- The effect in oscillations scale like the amplitude and not like the rate ⇒ Enhanced sensitivity in neutrino oscillation experiments

NSI in neutrinos

If the new operators involve the lepton doublets, it must be that

$$\mathcal{A}(\tau \to \mu) \sim \mathcal{A}(\nu_{\tau} \to \nu_{\mu}) = \varepsilon$$

For neutrino oscillation we have interference

$$\Gamma(\tau \to \mu X) \propto |\varepsilon|^2 \qquad P(\nu_{\mu} \to \nu_{\tau}) \propto |\exp(-i\Delta Et) + \varepsilon|^2$$

• For small
$$x = \Delta m^2 L/(4E)$$
 we get

$$P(\nu_{\mu} \to \nu_{\tau}) \propto |\varepsilon|^2 + x^2 + 2xIm(\varepsilon)$$

Charged lepton theory

Neutrinos and charged leptons

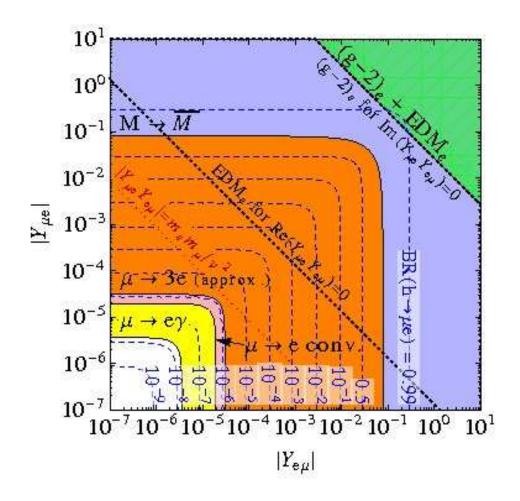
$$P(\nu_{\mu} \to \nu_{\tau}) \propto |\varepsilon|^2 + x^2 + 2xIm(\varepsilon) \qquad \Gamma(\tau \to \mu X) \propto |\varepsilon|^2$$

- NSIs affect oscillation experiments by changing the L/E dependence
- Both neutrinos and charged leptons can be relevant (linear vs quadratic)
- Charged lepton decays and neutrino oscillations can probe the same flavor violating operators
- The bound on muon CLFV are too strong to make NSIs in the μe sector relevant to neutrino oscillations
- Neutrino oscillations "win" on flavor conserving operators, like $ee\tau\tau$

Relation to the rest of physics

Charged lepton theory

The connection to quarks


- Both quarks and leptons probe high energy scale via flavor violation
- For hadrons we have QCD. It makes it hard and interesting
- Charged leptons BRs are much smaller
- Why hadrons "win" in probing power?
- In meson we probe the amplitude, in charged leptons the rates
- Of course, quarks and leptons probe different operators

Connection to flavor at the LHC

- We can probe LFV operators at the LHC
- Hopefully, we will find NP that violate flavor
- How about $Z' \rightarrow e\mu$?
- CLFV low energy processes can help in finding more about the source of LFV
- We can also look for LFV effects in Higgs decays

Connection to flavor at the LHC

Harnik, Kopp, Zupan, 2012

Y. Grossman

Charged lepton theory

Conclusions

Charged lepton theory

Conclusion

- Theorists and experimentalist do not need to work on similar things
- Charged lepton flavor violation is so clean, so just go and measure it

Charged lepton theory