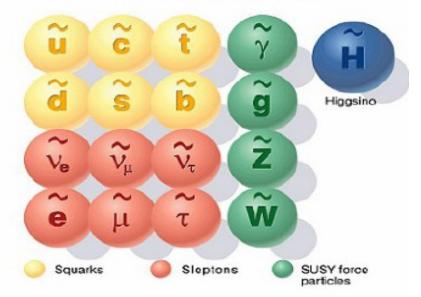


Search for Lepton Flavor Violation at ATLAS


Minghui Liu On behalf of ATLAS 08-05-2013

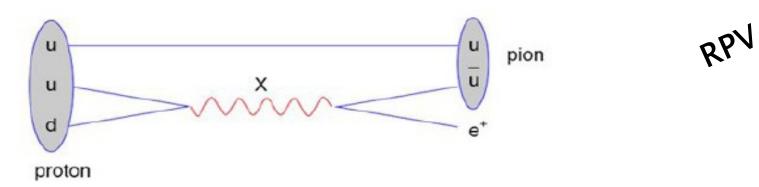
SUSY and R-Parity

Standard particles

SUSY particles

- Hierarchy problem
- Dark matter/Energy
- neutrino mass
- R-Parity

$$R = (-1)^{3B+L+2S}$$


The last possible space-time symmetry

- For SM particle: R = +1
- For SUSY particle: R = -1

R-Parity violating(RPV) and lepton flavor violating(LFV)

• Both "B" and "L" are conserved in SM, but not necessary in SUSY

✓ Proton Decay

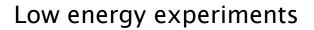
✓ neutrino mass form experimental observation:

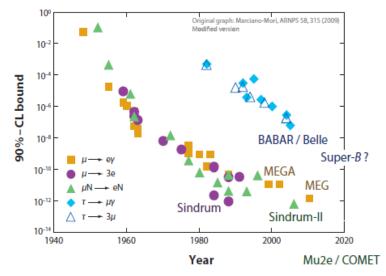
the neutrino oscillation

The flavor of neutrino is actually a mixing of three mass eigen-states.

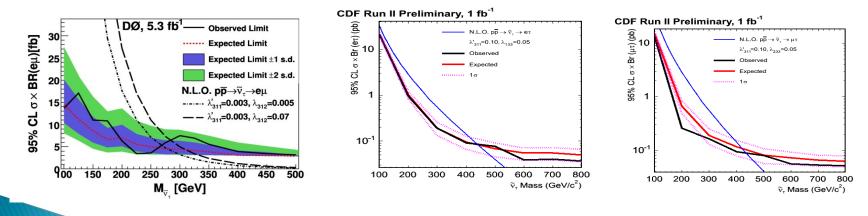
Topic of this slides

 $\Delta m_{21}^2 = (7.6 \pm 0.2) \times 10^{-5} \text{ eV}^2$ $|\Delta m_{32}^2| = (2.4 \pm 0.1) \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{12} = 0.87 \pm 0.03$ $\sin^2 2\theta_{23} > 0.92$


Outline


- Overview of LFV
- LFV search topics at ATLAS
- LFV search details
- Summary

Overview of LFV search


The sensitivity in the search for rare lepton flavor violating (LFV) reactions has been increased by many orders of magnitude over the years

Both CDF (1fb⁻¹: $e\mu$, $\mu\tau$, $e\tau$) and D0 (5 fb⁻¹: $e\mu$) have performed searches for a SUSY LFV sneutrino resonance and extra gauge symmetry Z' particle

History of searches for selected lepton flavor violating processes

High energy experiments

LFV topics at ATLAS

+ SUSY $\,\widetilde{\nu}_{_{\tau}}\,$ to eµ/eт/µт search

✓ 7TeV 35pb⁻¹, publication on PRL : <u>Phys. Rev. Lett.106,251801</u>

- ✓ 7TeV 1fb⁻¹, publication on EPJC: <u>EPJC Vol.71, 12(2011)1809</u>
- ✓ 7TeV 5fb⁻¹, publication on PLB : <u>PLB_29354</u>
- Z' \rightarrow eµ search
 - \checkmark 7TeV 35pb⁻¹, published together with $\widetilde{\nu}_{\tau}$ on PRL
 - ✓ 7TeV 1fb⁻¹, published together with \tilde{v}_{τ} on EPJC
- stop \rightarrow eµ continuum search
 - ✓ 7TeV 2fb⁻¹, publication on EPJC: Eur. Phys. J. C (2012) 72:2040
- (\geq)4-lepton search
 - ✓ 7TeV, 5fb⁻¹, published on JHEP: JHEP12(2012)124
 - ✓ 8TeV, 21fb⁻¹, conference note for Moriond: <u>ATLAS-CONF-2013-036</u>
- µ+displaced vertex
 - ✓ 7TeV 35pb⁻¹, published on PLB: Physics Letters B 707 (2012) 478-496
 - ✓ 7TeV 5fb⁻¹, published on PLB: Physics Letters B 719 (2013) 280-298

LFV search details

$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

35pb⁻¹, 1fb⁻¹ analyses focused on eµ channel only 5fb⁻¹ analysis is extended to $e\mu/e\tau/\mu\tau$ channels(τ : only hadronic decay)

A generic search for a heavy resonance decaying into $e\mu$, $\mu\tau$ or $e\tau$ final states

RPV Lagrangian: Decav $\mathcal{L}_{\vec{R}} = \frac{1}{2} \lambda_{ijk} \left(\bar{\nu}_{Li}^c e_{Lj} \tilde{e}_{jL}^* + e_{Li} \bar{\nu}_{Lj}^c \tilde{e}_{Rk}^* + \nu_{Li} e_{Lj} \bar{e}_{Rk} - e_{Li} \tilde{\nu}_{Lj} \bar{e}_{Rk} \right) +$ $\lambda'_{ijk} \cdot (\bar{\nu}^c_{Li} d_{Lj} \tilde{d}^*_{Rk} - e^c_{Ri} u_{Lj} \tilde{d}^*_{Rk} + \nu_{Li} \tilde{d}_{Lj} \bar{d}_{Rk} - e_{Li} \tilde{u}_{Lj} \bar{d}_{Rk} +$ **Production** $\tilde{\nu}_{Li} d_{Lj} \bar{d}_{Rk} - \tilde{e}_{Li} u_{Lj} \bar{d}_{Rk}) + h.c.$ d ∇_{τ} d

> Small backgrounds due to the requirement of two different flavor leptons • RPV couplings: λ'_{311} , λ_{i3k} (i \neq k), other RPV couplings are assumed to be zero.

τ-

$\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Trigger

Based on a single electron or mu trigger

2010 trigger

Table 5: Triggers used for the $e\mu$ analysis in 2010 data.

Period	Triggers used
A-E3	L1_EM14 L1_MU10
E4-G1	EF_e15_medium EF_mu10_MG
G2-I1(167576)	EF_e15_medium EF_mu13_MG
I1(167607)-I2	EF_e15_medium EF_mu13_MG_tight

2011 trigger 1fb⁻¹

EF_e20_medium || EF_mu18

■ 2011 trigger **5fb**⁻¹

Period	Run numbers	EF trigger	Int. luminosity [pb ⁻¹]
$e\!\mu$ channel and $e\tau$ channel			
D-J	179725-186755	EF_e20_medium	1695
Κ	186873-187815	EF_e22_medium	562
L-M	188921-191933	EF_e22vh_medium1	2393
$\mu \tau$ channel			
D-I	179725-186493	EF_mu18_MG	1469
J-M	186516-191933	EF_mu18_MG_medium	3181

$$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$$
 resonance search

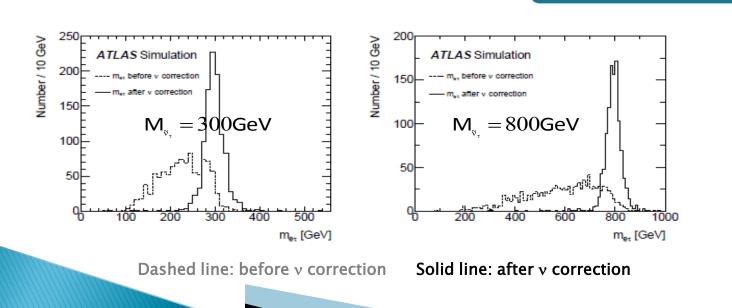
Event selection

- Single electron OR single muon trigger
- Data quality cuts
- Good primary vertex
- Exactly one electron and one muon with opposite charge (veto the 3nd lepton)
- dphi(/₁,/₂)>2.7
- $Pt(e/\mu) > Pt(\tau)$

Added in 7TeV, 5fb⁻¹ analysis

Objects' selections followed mainly the recommendations from ATLAS performance group

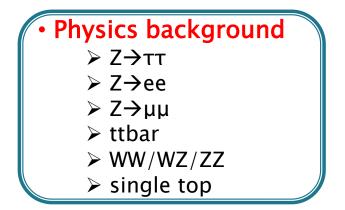
$\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search


Reconstruction of di-lepton invariant mass

For eµ channel, it's pretty easy

For $e\tau$ and $\mu\tau$ channel, there's missing energy

- missing energy is from only one $\boldsymbol{\nu}$
- τ decay finals are heavily boosted due to large $M_{v_{\tau}}$
- neutrino and the resultant jet are approximately collinear

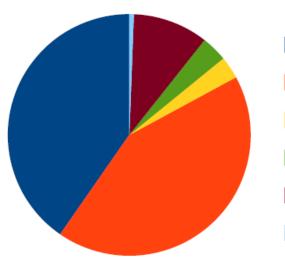

Reconstruct the v by supposing $\eta_v = \eta_{\tau_v}$

Collinear approximation

 $\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

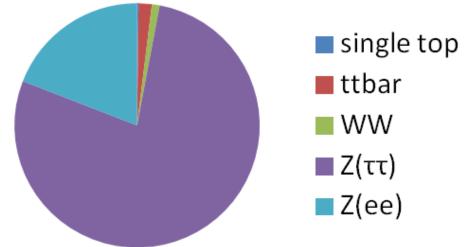
Background estimation

MC often doesn't provide good predictions of these fake bkgd


Use data driven method to Estimate their contributions

$\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation: Physics background


Got from corrected MC simulation

Ztautau

- ttbar
- W/Z+gamma
- single top
- WW
- WZ

Physics backgrounds fraction in 1fb⁻¹ analysis (eµ channel) Physics backgrounds fraction in 5fb⁻¹ analysis (eτ channel)

$\widetilde{\mathbf{v}}_{z} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation: jet fake background

 $N_{R}^{T} = \frac{N_{T} - fN_{L}}{\varepsilon - f}\varepsilon$ $N_{F}^{T} = \frac{\varepsilon N_{L} - N_{T}}{\varepsilon - f}f$

For 35pb⁻¹ & 1fb⁻¹ study, Matrix method is used

- Matrix method
 - 2x2 matrix

$$N_L = N_R + N_F$$
$$N_T = \varepsilon N_R + f N_F$$

4x4 matrix

Back

• ε : from Z(\rightarrow ee/µµ) control sample

□ "tag & probe" method

□ leptons which are back-toback with a jet

 \Box E_t^{miss} <15GeV; M_T<30GeV

Isolation (Etcone40 for e/Ptcone40 for μ) is used as the discriminate variable from "Loose" to "Tight"

More details: Phys. Rev. Lett. 106, 251801

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation:

For 35pb⁻¹ & 1fb⁻¹ study

Process	Number of events
$Z/\gamma^* \to \tau \tau$	54 ± 7
tī	57 ± 9
WW	13.4 ± 1.7
Single top	4.6 ± 0.9
WZ	0.79 ± 0.11
Instrumental background	33^{+30}_{-10}
Total background	163_{-18}^{+34}
Data	160

Process	Number of events		
tī	1580 ± 170		
Jet fake	1175 ± 120		
$Z/\gamma^* \to \tau \tau$	750 ± 60		
WW	380 ± 31		
Single top	154 ± 16		
$W/Z + \gamma$	82 ± 13		
WZ	22.4 ± 2.3		
ZZ	2.48 ± 0.26		
Total background	4145±250		
Data	4053		

$\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation: jet fake background

For 5fb⁻¹ study, a "Charge based" method is used(specially used for τ channels)

$$N^{os} = N_{QCD}^{os} + N_{W+jet}^{os} + N_{Z\to\tau\tau}^{os} + N_{others}^{os}$$

$$= r_{QCD} \times N_{QCD}^{ss} + r_{W+jet} \times N_{W+jet}^{ss} + r_{Z\to\tau\tau} \times N_{Z\to\tau\tau}^{ss} + r_{others} \times N_{others}^{ss}$$

$$T_{U, ttbar, WW, single top}$$

$$P_{QCD} = \frac{N_{QCD}^{os}}{N_{QCD}^{ss}} = 1,$$

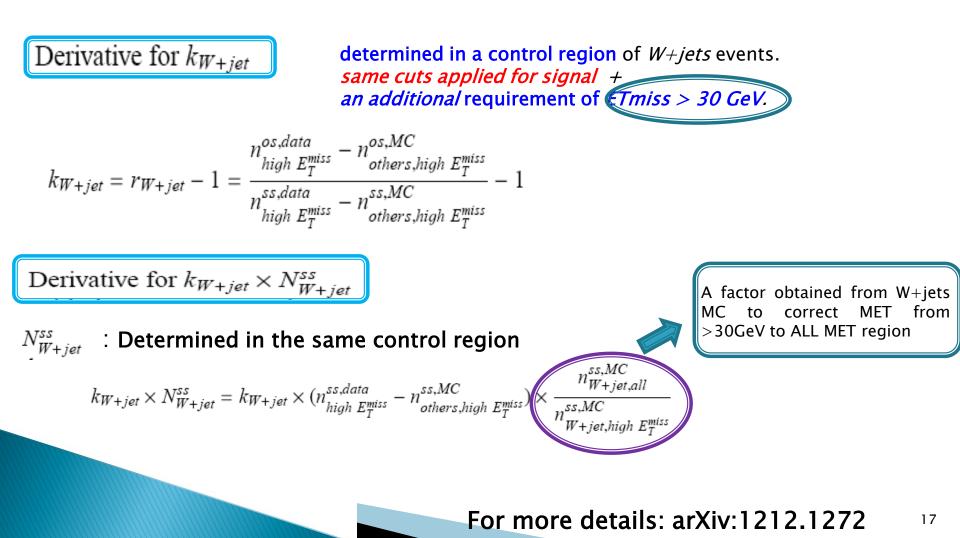
$$r_{W+jet} = \frac{N_{W+jet}^{os}}{N_{Z\to\tau\tau}^{ss}} = 1 + k_{W+jet},$$

$$r_{Z\to\tau\tau} = \frac{N_{Z\to\tau\tau}^{os}}{N_{Others}^{ss}} = 1 + k_{others},$$

$$N^{os} = N_{total}^{ss} + (w_{wjet} * N_{wlet}^{ss}) + (k_{Z\tau\tau} * N_{Z\tau\tau}^{ss} + k_{others} * N_{others}^{ss})$$

$$Irgely based on collision data control samples$$

$$Others: ZI, ttbar, WW, single top$$


$$OS: opposite sign events SS : same sign events SS : same sign events$$

$$SS : same$$

$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation: jet fake background

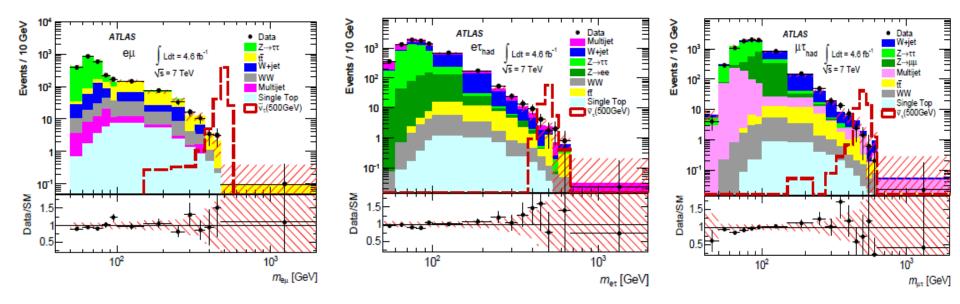
For 5fb⁻¹ study, a "Charge based" method is used(specially used for τ channels)

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Background estimation:

For 5fb⁻¹ study

	$m_{\ell\ell'} < 200 \mathrm{GeV}$			$m_{\ell\ell'} > 200 \mathrm{GeV}$		
Process	$N_{e\mu}$	$N_{e\tau}$	$N_{\mu\tau}$	$N_{e\mu}$	$N_{e\tau}$	$N_{\mu\tau}$
$Z/\gamma^* o au au$	1880 ± 150	4300 ± 600	5300 ± 600	8 ± 1	24 ± 3	28 ± 4
$Z/\gamma^* \to ee$		1050 ± 80			44 ± 3	
$Z/\gamma^* ightarrow \mu \mu$			3030 ± 290			29 ± 3
$t\bar{t}$	760 ± 110	96 ± 18	94 ± 14	251 ± 30	90 ± 15	70 ± 13
Diboson	260 ± 27	57 ± 8	60 ± 7	71 ± 8	26 ± 3	24 ± 3
Single top	87 ± 8	11 ± 2	9 ± 1	39 ± 4	10 ± 2	8 ± 1
W+jets	420 ± 260	3500 ± 700	3200 ± 600	90 ± 40	370 ± 80	470 ± 110
$\operatorname{multijet}$	37 ± 13	2200 ± 700	730 ± 230	6 ± 2	150 ± 50	24 ± 18
Total						-
background	3440 ± 300	11200 ± 900	12400 ± 800	460 ± 60	720 ± 80	650 ± 90
Data	3345	11212	12285	498	795	699


 $Z(\rightarrow II)$, ttbar, Wjet are the dominant backgrounds

Good agreement between data and expectation

 $\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Control plots: data Vs. MC

Plots for 5fb⁻¹

Invariant mass of eµ

Invariant mass of $e\tau$

Invariant mass of $\mu\tau$

Reasonable Agreement

$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

systematics

eµ channel

Sources	Uncertainties	Uncertainties
	$m(e,\mu) < 200 \text{ GeV}$	$m(e,\mu) > 200 \text{ GeV}$
MC cross-section	3 5%	5.6%
Trigger	1.0%	0.9%
Luminosity	1.2%	1.7%
Electron ID	2.6%	1.5%
Muon ID	1.3%	1.1%
Electron scale and resolution	1.0%	1.1%
Muon resolution	0.8%	1.1%
Missing E_T uncertainty	4.2%	6.5%
Electron Charge misID	1.0%	1.3%
r _{QCD}	0.1%	0.1%
MC W+jet shape uncertainty	0.6%	0.9%
MC $t\bar{t}$ shape uncertainty	1.8%	1.7%
MC Statistics	5.3%	10.2%
Total systematics	6.9%	9.4%

For 5fb⁻¹

$e\tau$ channel

Sources	uncertainties with $m(e, \tau) < 200 \text{ GeV}$	uncertainties with $m(e, \tau) > 200 \text{ GeV}$
MC cross-section	2.0%	2.1%
Trigger	0.6%	0.4%
Luminosity	1.2%	0.9%
Electron ID	1.3%	1.1%
Tau ID	4.7%	2.8%
Electron scale and resolution	0.9%	1.1%
τ scale	2.0%	2.7%
Missing E_T uncertainty	4.2%	6.2%
Electron charge misID	0.8%	1.5%
rQCD	2.0%	2.1%
MC W+jet shape uncertainty	2.7%	3.6%
MC Statistics	1.9%	6.7%
Total systematics	7.8%	9.1%

$\mu\tau$ channel

• • • • • • • • • • • • • • • • • • • •					
Sources	uncertainties with $m(\mu, \tau) < 200 \text{ GeV}$	uncertainties with $m(\mu, \tau) > 200 \text{ GeV}$			
MC cross-section	2.8%	3.0%			
Trigger	1.0%	0.8%			
Luminosity	1.8%	0.7%			
Tau ID	2.8%	3.5%			
Muon ID	1.1%	0.9%			
Tau scale	2.6%	3.6%			
Muon resolution	1.1%	0.9%			
r _{QCD}	0.6%	0.3%			
Missing E_T uncertainty	3.4%	8.6%			
MC <i>w</i> +jet shape uncertainty	1.6%	3.8%			
MC Statistics	1.8%	8.6%			
Total systematics	6.6%	11.3%			

$$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$$
 resonance search

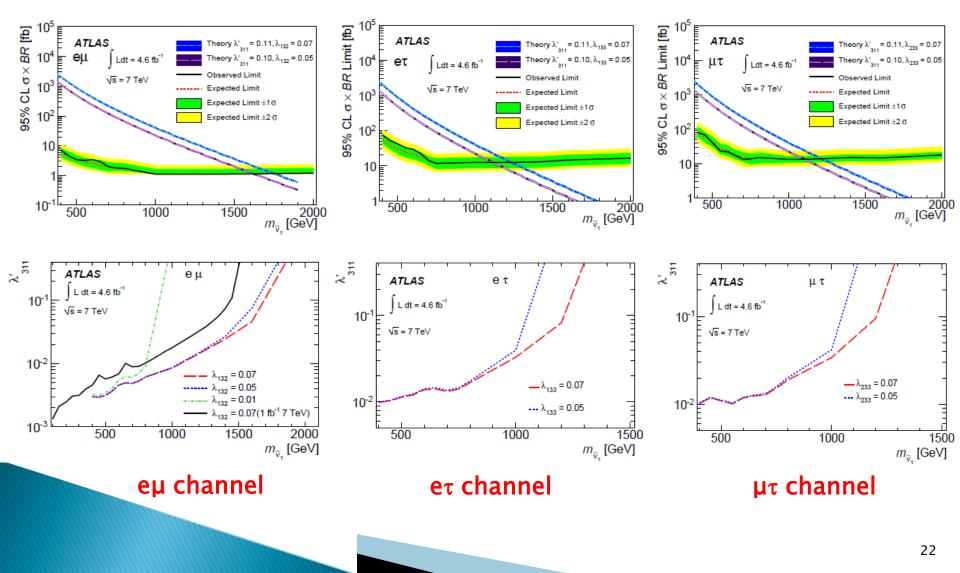
Limit setting

Bayesian method is used to set limits for $\widetilde{\nu}_{_\tau}$ search

Bayesian theorem

$$P(s|n) = \frac{\iint P(n|s, b, \varepsilon) P(s) P(b) P(\varepsilon) db d\varepsilon}{\iint P(P(n|s, b, \varepsilon)) P(s) P(b) P(\varepsilon) ds db d\varepsilon}$$
$$\int_{0}^{s_{up}} P(s|n) ds = 1 - \alpha \qquad (1 - \alpha = 95\%)$$

 Flat prior for signal cross section and Gamma prior for background and efficiency


Gamma
$$(k, \theta) = f(x; k, \theta) = \frac{1}{\theta^k} \frac{1}{\Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}}$$

for $x \ge 0$ and $k, \theta > 0$

$\widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Limits to new physics

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Limits to new physics @ 95% C.L.

Analysis	Limit on σ x Br. eµ channel	Limit on σ x Br. eτ channel	Limit on σ x Br. μτ channel	Limit on λ ['] ₃₁₁ eμ channel	Limit on λ ['] ₃₁₁ eτ channel	Limit on λ' ₃₁₁ μτ channel
35pb ⁻¹ @ATLAS	>660GeV			<2.4x10 ⁻²		
1fb⁻¹@ATLAS	>1.3TeV			<5.6x10 ⁻³		
5fb ⁻¹ @ATLAS	>1.6TeV	>1.1TeV	>1.1TeV	<3.0x10 ⁻³	<1.1x10 ⁻²	<1.1x10 ⁻²
1 fb⁻¹@CDF	>550GeV	>440GeV	>440GeV	<2.6x10 ⁻²	<4.5x10 ⁻²	<5.5x10 ⁻²
Limits on $\sigma \mathbf{x} \mathbf{Br} : @ \lambda'_{au} = 0.10$ $\lambda_{au} = 0.05$						

Limits on $\sigma \times Br.$: @ $\lambda'_{311}=0.10$, $\lambda_{i3k}=0.05$ Limit on λ'_{311} : @ M=500GeV, $\lambda_{i3k}=0.05$

Summary for $\widetilde{\boldsymbol{\nu}}_{\tau}$ resonance search

- Performed 3 studies based on different integrated luminosities, and made 3 publications
 - > 35pb⁻¹: Phys. Rev. Lett.106,251801
 - ➢ 1fb⁻¹: EPJC Vol.71, 12(2011)1809
 - ➤ 5fb⁻¹: PLB(accepted) arXiv:1212.1272
- The data are found to be consistent with standard model predictions
- Limits are placed on the cross section times branching ratio for an RPV SUSY sneutrino. These results considerably extend previous constraints from Tevatron experiments

$Z' \rightarrow e\mu$ resonance search at ATLAS


There are two analyses based on 35pb⁻¹ and 1fb⁻¹ which made 2 publications together with tau sneutrino resonance search.

extension to the SM Sequential Standard Model (SSM) Ζ' extra U(1) gauge symmetry $\frac{g_z^2}{4\pi} \frac{(Q_{ij}^l)^2}{144} \frac{M^2}{(M^2 - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}$ Zinvariant mass of the lepton pair M: $M_{7'}$: the mass and of the Z' $\Gamma_{z'}$: total width of the Z' q q_7 : the gauge coupling of the Z boson Q^{I}_{ij} : i,j =1,2 (1 for e, 2 for mu)

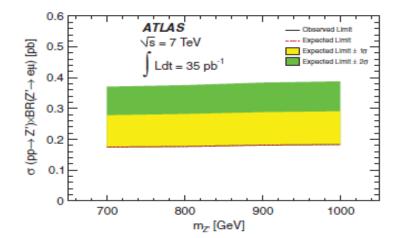
$Z' \rightarrow e\mu$ resonance search at ATLAS

Event selection and Background estimation

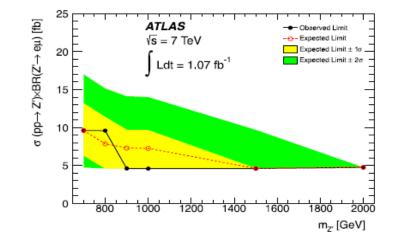
- ${\boldsymbol{\cdot}}$ Event topology is exactly the same with $\,\widetilde{\nu}_{_{\scriptscriptstyle T}}$ analysis
- For both event selection and background estimation, we followed the same method for tau sneutrino search

Invariant mass of eµ @ 35pb⁻¹

Invariant mass of eµ @ 1fb⁻¹

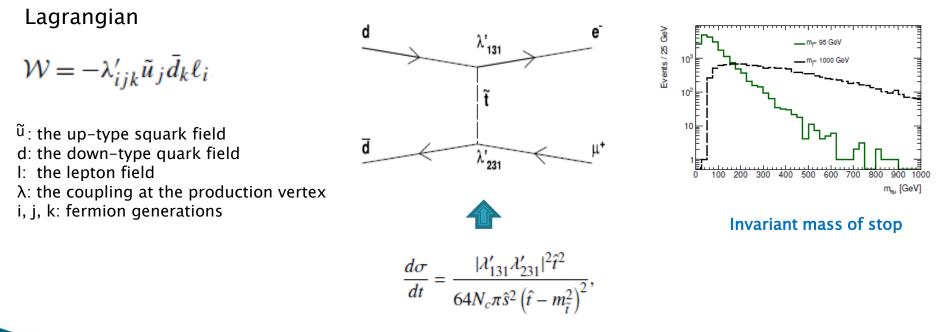

Data and MC are in reasonable agreement !

$Z' \rightarrow e\mu$ resonance search at ATLAS


Limits on Z' search

Mass (GeV)	N _{data}	Lumi (pb^{-1})	σ (Lumi) (pb^{-1})	ϵ_{sig}	$\sigma(\epsilon_{sig})$	$N_{Bkg.}$ (expected)
700	0	35.2	3.9	0.503	0.012	0.67
800	0	35.2	3.9	0.496	0.012	0.67
900	0	35.2	3.9	0.486	0.012	0.67
1000	0	35.2	3.9	0.481	0.011	0.67

Mass (GeV)	Search Window (GeV)	N _{data}	ϵ_{selc}^{sig}	$\sigma(\epsilon_{selc}^{sig})$	N _{Bkg} .
700	550-850	3	0.594	0.014	2.8
800	600-1000	3	0.610	0.014	2.3
900	700-1100	0	0.610	0.014	1.2
1000	750-1250	0	0.614	0.014	0.9
1500	1100-1800	0	0.610	0.014	0.2
2000	1600-2400	0	0.592	0.014	0



Limit on σ x Br. Vs. m₂, @ 35pb⁻¹

Limit on σ x Br. Vs. m_{r} , @ 1fb⁻¹

- A search for eµ final states in the t-channel
- Exchange of an R-parity violating scalar top quark
- Continuum search using 2.1 fb⁻¹ of 7TeV data(2011)

where \hat{s} and \hat{t} are the usual Mandlestam variables in the $d\bar{d}$ center-of-mass frame, $N_c = 3$ is the color factor, and $m_{\tilde{t}}^2$ is the scalar top mass.

Objects & event selection

- Single electron OR single muon trigger
- Data quality cuts
- Good primary vertex
- Exactly one GOOD electron and one GOOD muon with opposite charge

• Author 1 or 3

- $p_{\rm T} > 25 \text{ GeV}$
- $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$ (fiducial region)
- isEM::Tight
- $p_{\rm T}^{cone20}/p_{\rm T} < 0.10$
- $E_{\rm T}^{cone20}/p_{\rm T} < 0.15$
- $\Delta R(\mu) > 0.2$

Staco muon (author 6)

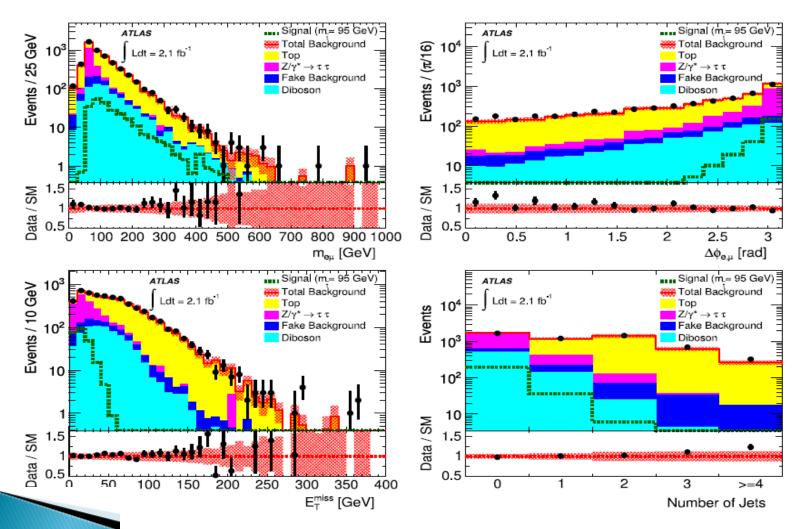
- $p_{\rm T} > 25 \, {\rm GeV}$
- |η| < 2.4
- Combined muon
- Pass MCP recommended muon selection criteria:
 - Require b-hits if expected
 - Number of pixel hits+number of crossed dead pixel sensors > 1
 - Number of SCT hits+number of crossed dead SCT sensors >= 6
 - Number of pixel holes + number of SCT holes < 3
 - For $|\eta| < 1.9$, require n > 5 and $n_{TRToutliers} < 0.9n$ and for $|\eta| > 1.9$, require $n_{TRToutliers} < 0.9n$ if n > 5, where $n = n_{TRThits} + n_{TRToutliers}$ and $n_{TRThits}$ denotes the number of TRT hits on the muon track and $n_{TRToutliers}$ denotes the number of TRT outliers on the muon track
- $p_{\rm T}^{cone20}/p_{\rm T} < 0.10$
- $E_{\rm T}^{cone20}/p_{\rm T} < 0.15$

Background estimation

•	physics	backgrounds :	

Got from corrected MC simulations

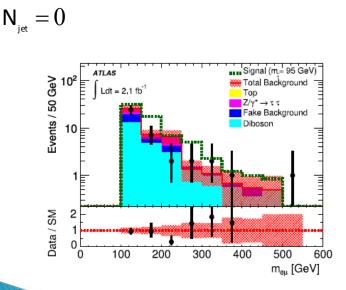
"jet fake" backgrounds


Followed exactly the same method with tau sneutrino search: **4x4 matrix method**

Process	Preselection
tī	2800 ± 400
$Z/\gamma^* o au au$	1210 ± 110
WW	640 ± 50
Fake background	290 ± 40
Single top	270 ± 40
WZ	36 ± 4
$W/Z + \gamma$	20 ± 7
ZZ	4.0 ± 0.4
Total background	5300 ± 400
Data	5387
Signal ($m_{\tilde{t}} = 95 \text{ GeV}$)	240 ± 15
Signal ($m_{\tilde{t}} = 500 \text{ GeV}$)	3.05 ± 0.18
Signal ($m_{\tilde{t}} = 1000 \text{ GeV}$)	0.305 ± 0.018

Event observation and sig/Background estimation

Data Vs. MC



Further event selection

 $m_{_{e\mu}}\!>\!100\text{GeV}$

 $\begin{array}{l} \Delta \varphi_{_{e\mu}} > 3.0 \\ E_{_{T}}^{_{miss}} < 25 GeV \end{array}$

Due to **no mass peak**, it's not enough to use only the invariant mass distribution of $e\mu$ to provide adequate separation of signal and bkgd

Process	Final selection
WW	23.4 ± 3.3
$Z/\gamma^* \to \tau \tau$	10 ± 4
Fake background	9.6 ± 1.9
WZ	0.76 ± 0.31
tī	0.25 ± 0.17
Single top	0.22 ± 0.20
$W/Z + \gamma$	0.04 ± 0.04
ZZ	0.042 ± 0.028
Total background	44 ± 6
Data	39
Signal ($m_{\tilde{t}} = 95 \text{ GeV}$)	67 ± 5
Signal ($m_{\tilde{t}} = 500 \text{ GeV}$)	1.28 ± 0.08
Signal ($m_{\tilde{t}} = 1000 \text{ GeV}$)	0.124 ± 0.008

Optimized by maximizing the significance

Systematics

Source	Fractional Uncertainty	Applicable To
Luminosity	3.7%	Signal + All Background
Trigger	1%	Signal + All Background
Electron reco and ID efficiency	2%	Signal + MC Background
Muon reco and ID efficiency	1%	Signal + MC Background
Jet energy scale	3.6%	Signal + MC Background
Electron energy smearing	0.9%	Signal + MC Background
Muon momentum smearing	0.3%	Signal + MC Background
Theoretical cross section	5 - 15%	MC Background Only
E_T^{miss} Uncertainty	12.2%	Signal + MC Background Only
MC Shape Uncertainty	13%	WW Background Only
Matrix method	15.0%	Instrumental Only

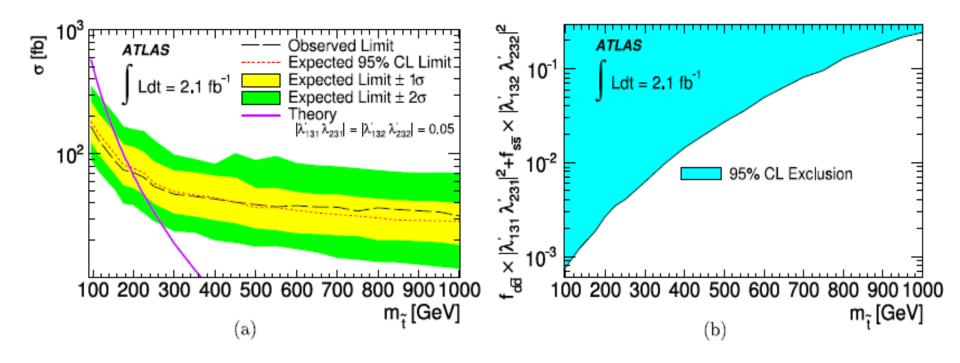
The mainly systematic sources are: Missing Et, WW MC shape and jet-fake background estimation

Limit setting

• Since no excess is observed in data, limits are set on $\sigma_{sTop \rightarrow e\mu}$ $m_{e\mu}$ distribution in a single bin for $m_{e\mu} > 400$ GeV is used

A modified-frequentist approach is used

using a binned log-likelihood ratio (LLR)


$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

$$CL_{s+b} = \int_{LLR(s+b|x)}^{\infty} P(s+b|x')d(LLR(s+b|x'))$$

$$CL_{b} = \int_{LLR(b|x)}^{\infty} P(b|x')d(LLR(b|x'))$$

$$S: signal b: bkgd x': data$$

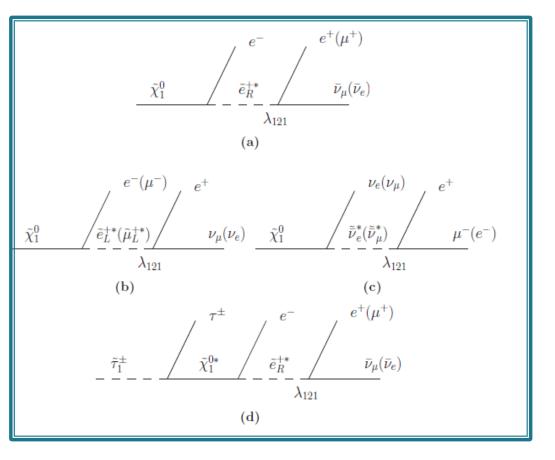
Limits for stop search

observed 95 % CL upper limits on $\sigma(\text{stop} \rightarrow \text{e}\mu)$

Excluded region for the PDF weighted sum of couplings

M_{stop}=95GeV

(≥)4-lepton RPV search


- "Leptons" refers to electrons or muons
- \bullet including those from τ decays
- $\boldsymbol{\cdot}$ does not include τ leptons that decay hadronically

Super-potential term

 $W_{RPV} = \lambda_{ijk} L_i L_j \bar{E_k}$

i,j,k refer to the lepton generations
L:lepton SU(2) doublet super-fields

Several scenarios, eg. Pair production of

Objects & event pre-selection

- Single e/μ trigger % information = 1 and double e/μ trigger
- Data quality cuts
- Good primary vertex

Electron

pT>10GeV, |η|<2.47,remove crack
tight
calo isolation & track isolation

Jet

AntiKt4
pT>20GeV, |η|<2.5
JVF>0.75

Signal region selection

7TeV, 5fb⁻¹

2 signal regions

8TeV, 21fb⁻¹

- ▶ pT>10GeV, |η|<2.4</p>
- \geq |d0| and |z0| requirement
- ➤ calo isolation & track isolation
- ➤ track quality

Tau(hadronic)

- ▶ pT>20GeV, |η|<2.5</p>
- JetBDTSigLoose
- electronVeto

Selection	SR1	SR2
Number of leptons	≥ 4	≥ 4
Z-candidate	veto	veto
$E_{\rm T}^{\rm miss}/{\rm GeV}$	> 50	_
$m_{ m eff}/{ m GeV}$		> 300

$m_{\rm eff} = E_{\rm T}^{\rm miss} +$	$-\sum_{\mu} p_{\mathrm{T}}^{\mu}$	$E_{T} + \sum_{e} E_{T}^{e}$	$+\sum_{j} E_{\mathrm{T}}^{j}$
			· · · · · ·

SR	$\mathrm{N}(\ell=e,\mu)$	$N(\tau)$	Z Candidate	$E_{\rm T}^{\rm miss}[{\rm GeV}]$		$m_{\rm eff}[{ m GeV}]$	Scenario
SR0noZb SR1noZ	≥4 =3	_	extended veto extended veto	>75 >100	or or	1000	RPV RPV

dR(jet,lepton)>0.4

Background estimation

Irreducible background

events with four real, isolated leptons

Estimated from corrected MC samples

Got from MC

Same strategy for both 7TeV and 8TeV analyses

reducible background

process has at least one "fake" lepton ✓ Jet fake ✓ γ conversion

estimated using a weighting method

$$\begin{split} & [N_{\text{data}}(3\ell_S + \ell_L) - N_{\text{MCirr}}(3\ell_S + \ell_L)] \times F(\ell_L) \\ & - [N_{\text{data}}(2\ell_S + \ell_{L_1} + \ell_{L_2}) - N_{\text{MCirr}}(2\ell_S + \ell_{L_1} + \ell_{L_2})] \times F(\ell_{L_1}) \times F(\ell_{L_2}) \end{split}$$

 ℓ_{s} : signal leptons ℓ_{L} : loose leptons, which are tagged leptons failing the signal lepton requirements

 $F = \sum_{i,j} \left(\alpha^i \times R^{ij} \times f^{ij} \right)$

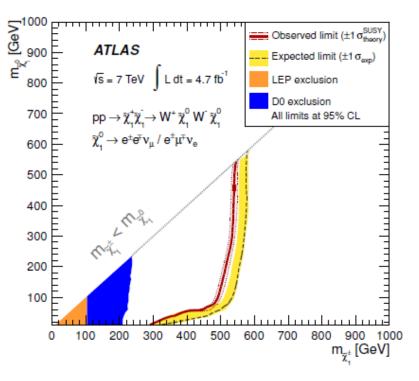
i is the type of fake (heavy-flavour leptons or conversion electrons) *j* is the process category the fake originates from (top quark or W/Z boson) *f*^{*ij*} ratio of tagged leptons faked as "signal" vs. "loose" R^{ij} Weighting factor according to fractional contribution of the process α^{i} fake ratio measured in data divided by that in simulation

More details: JHEP12(2012)124

Background estimation

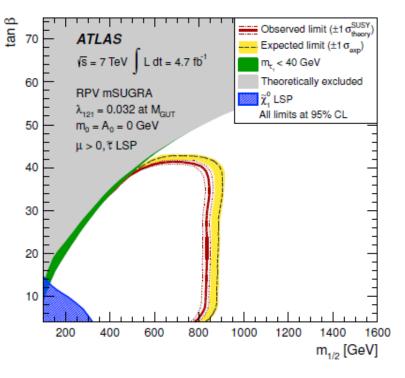
7TeV, 5fb⁻¹

Selection	SR1	SR2
SUSY ref. point 1	6.5 ± 0.6	7.1 ± 0.7
SUSY ref. point 2	4.2 ± 0.6	4.5 ± 0.6
ZZ	0.14 ± 0.11	0.51 ± 0.30
$t\bar{t}Z$	0.023 ± 0.014	0.029 ± 0.016
$t\bar{t}WW$	0.0044 ± 0.0035	0.005 ± 0.004
Σ Irreducible	0.17 ± 0.12	0.54 ± 0.31
Reducible	0.8 ± 0.8	0.18 ± 0.26
Σ SM	1.0 ± 0.8	0.7 ± 0.4
Data	3	2
p_0 -value (σ)	0.05(1.7)	0.07(1.5)
$\sigma_{\rm vis}$ obs (exp)	1.3(0.8)	1.1(0.7)


8TeV, 21fb⁻¹

Sample	SR0noZb	SR1noZ
ZZ	0.50 ± 0.26	0.19 ± 0.05
ZWW	0.08 ± 0.08	0.05 ± 0.05
tīZ	0.75 ± 0.35	0.16 ± 0.12
Higgs	0.22 ± 0.07	0.23 ± 0.06
Irreducible Bkg.	1.6 ± 0.6	0.62 ± 0.21
Reducible Bkg.	$0.05\substack{+0.14 \\ -0.05}$	1.4 ± 1.3
Total Bkg.	1.6 ± 0.6	2.0 ± 1.3
Data	1	4
<i>p</i> ₀ -value	0.5	0.15

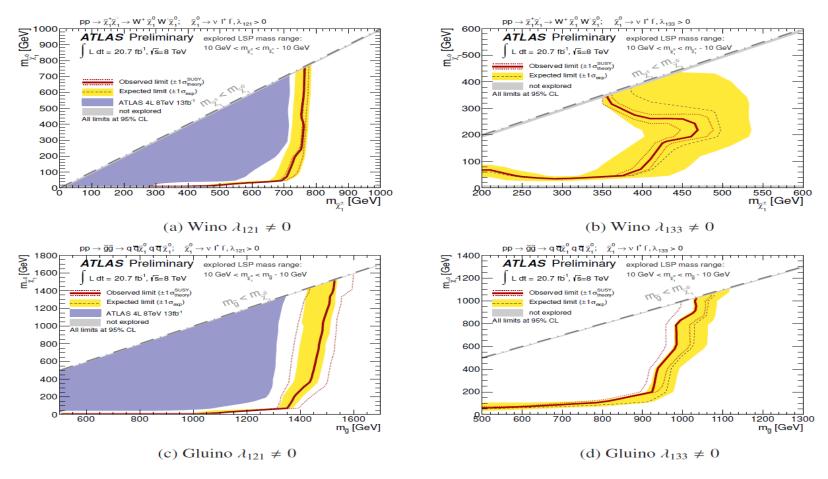
No significant excess of events is found in the signal regions.


Limit setting results

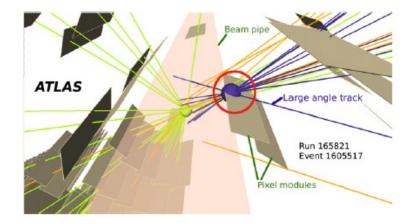
7TeV, 5fb⁻¹

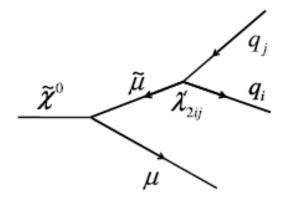
"simplified model"

Chargino masses up to 540GeV are excluded for LSP masses above 300GeV



"MSUGRA model"


Limit setting results


8TeV, 21fb⁻¹

• Wino model: NLSP masses of up to ~ 750GeV (~ 400GeV) are excluded • Gluino model: NLSP masses of up to ~ 1400GeV (~ 1000GeV) are excluded for λ_{121} (λ_{133})

- Search for long-lived, heavy particles in final states with a high pT muon and multi-track displaced vertex (a distance of order millimeters to tens of centimeters from IP)
- performed 2 searches with 2010 35pb⁻¹ and 2011 5fb⁻¹ respectively

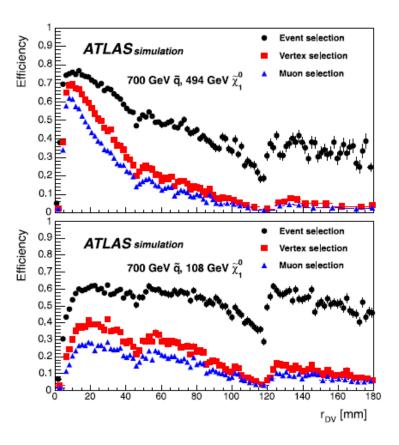
An example of DV with a high-pT track

SUGRA scenario,

Under such a scenario, processes are simulated in which a pair of squark is produced:

```
\widetilde{q}\widetilde{q}/\widetilde{\widetilde{q}}\widetilde{\widetilde{q}}/\widetilde{q}\widetilde{\widetilde{q}} \rightarrow qq/\overline{q}\overline{q}/q\overline{q} + \widetilde{\chi}^{\circ}\widetilde{\chi}^{\circ}
```

Event selection


- Event pass L1_mu40 trigger
- PV: n_{track}>4; |z|<200mm

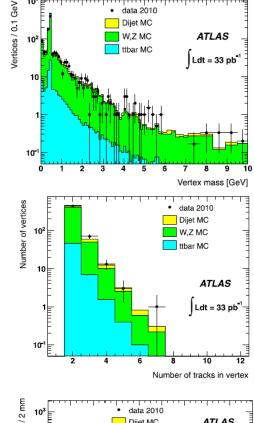
Displaced Vertex(DV) selection

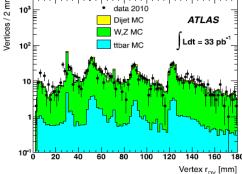
- In pixel region
- vertex recon quality
- \bullet transverse distance from PV ${>}4mm$
- n_{track} >3
- $m_{DV} > 10 \text{ GeV}$
- veto vertices within regions of highdensity material

Muon selection

- staco mu
- pT>45GeV(>50GeV for 2011 data)
- |η|<1.07
- |d0|>1.5mm(for 2011 data)
- Match with L1 trigger
- SCT&TRT hits requirement

The efficiency as a function of r_{DV} for vertices in the signal MC samples


Background estimation


Data Vs Mc in the control region, $m_{\text{DV}} < 10$ GeV and before applying the material veto

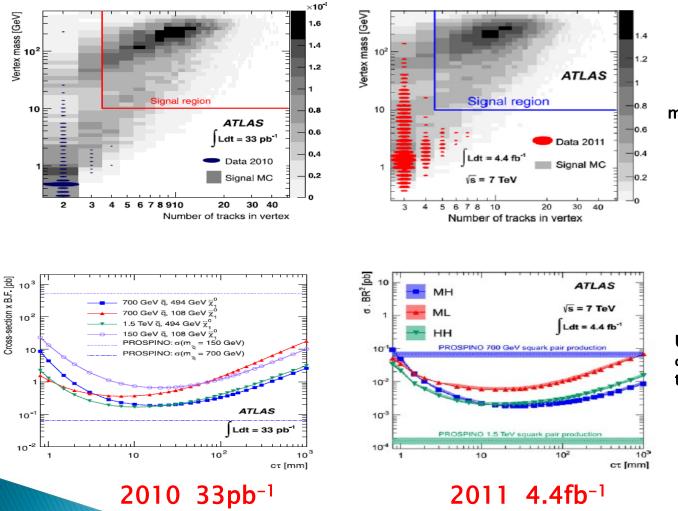
- Background events to satisfy all the selection criteria is extremely low
- use background MC samples to estimate the number of data events of each background type

In 2010 data: no events are observed in data fewer than 0.03 background events are expected

In 2011 data: no events are observed in data fewer than 0.06 background events are expected

More details: Physics Letters B 719 (2013) 280-298

systematics



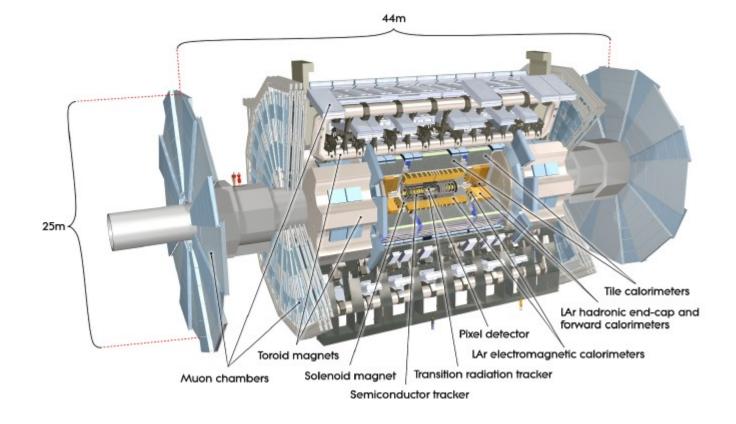
Dominant sources

performance of vertex reconstruction algorithm

- Pileup
- Signal PDF

Muon + displaced vertex search Results

Vertex mass vs. vertex track multiplicity for displaced vertices


Upper limits at 95% CL on the σ x Br. vs. the neutralino lifetime times c (light speed)

Summary

- We have performed 5 studies aiming at LFV search based on 7TeV/8TeV datasets, and made 7 publications
- Data are found to be consistent with standard model predictions, thus limits are set based on different models
- 8TeV analyses for LFV are on their way, and more topics are included

Backup

The ATLAS detector

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Control plots: data Vs. MC

Plots for 35pb⁻¹

Data 2011

Total Bkg.

Тор

Ζ/γ →ττ

Fake Bkg.

••••• v. (650 GeV)

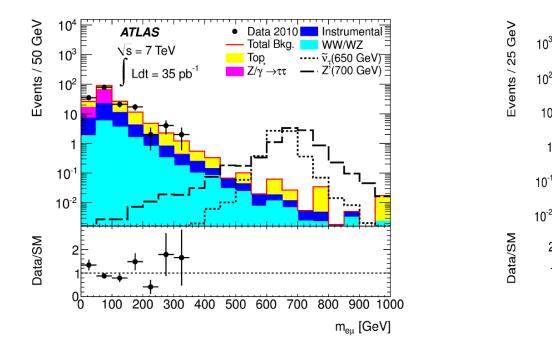
Z'(700 GeV)

WW/WZ/ZZ

ATLAS

 $\sqrt{s} = 7 \text{ TeV}$

Ldt = 1.07 fb⁻¹


10

102

10

200

400

Invariant mass of eµ

600

800

1000

1200

1400

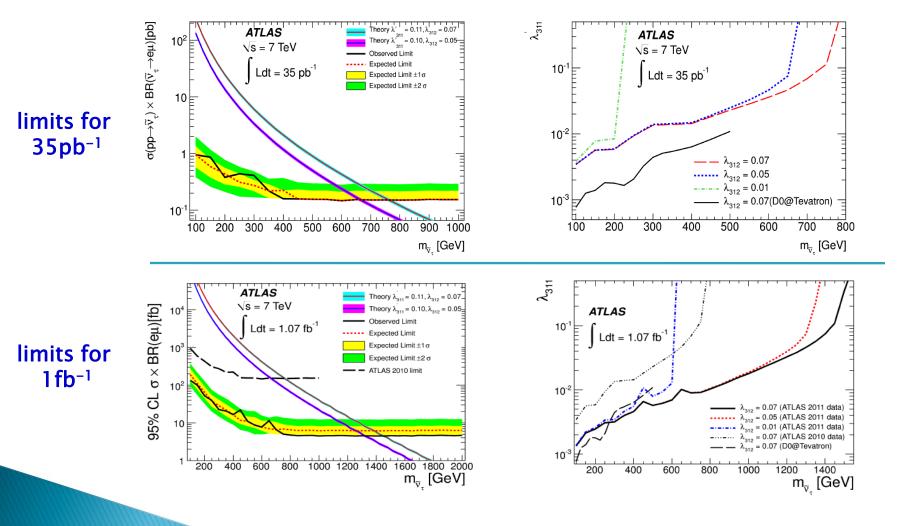
m_{eu} [GeV]

Invariant mass of eµ

Reasonable Agreement

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

systematics


Source	Relative uncertainty
Luminosity	3.7% (11% for 2010 data)
Trigger efficiency	1%
Electron Reco & ID efficiency	2%
Muon Reco & ID efficiency	1%
$Z/\gamma^* \to \tau\tau \text{ cross section}$	5%
WW and WZ cross section	7%
ZZ cross section	5%
Ttbar cross section	10%
Single top	9%
Wy, Zy cross section	10%

For 35pb⁻¹ & 1fb⁻¹

 $\widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ resonance search

Limits to new physics

52