Observations on Lepton Flavor Violation Experiments

1st Conference on Charged Lepton Flavor Violation Lecce 2013

15-16th Century Explorations into Unknown Waters

Christoforo Colombo– 1492 search for East Indies...

for Asia ...

Discovered

Discovered

Ponce de Leon – 1513 search for the Fountain of Youth ...

Amerigo Vespucci- 1499 search

Discovered

21stCentury Explorations Into Unknown Waters

- High energy
- Dark matter
- Dark energy
- Charged lepton flavor violation, EDMs, and CP violation

Vague but well motivated ideas of what to look for --- really searching in the dark....

Here be dragons.

The 1265 Psalter world map.

D. Bryman CLFV, Lecce, Italy

1st Conference on Charged Lepton Flavor Violation Conference Summary

Day 1+ Theory:

Grossman, Theory of charged leptons Lavignac, CLFV Model Constraints from MEG, BELLE/BaBar and LHCb Redi, Lepton Violation in non-SUSY Mannel, Possibilities with Angular Distribution and Polarization Shadmi, Model Constraints from CLFV at Muons and Taus Paradisi, Interrelationships among g-2, EDMs and CLFV Hambye, Lepton flavor violation in low-energy see-saw models Czarnecki, Calculations of Radiative Backgrounds Vicente, Charged Lepton Flavor Violation beyond minimal SUSY

Conclusion:

No tail, no definite theory, but if you find it, we'll make one!

D. Bryman CLFV, Lecce, Italy

Standard Model : A great story ... but definitely not the whole story...

- Cosmological issues: inflation, dark matter, dark energy, matter anti-matter asymmetry...
- Theoretical issues: gravity (CC), neutrino mass, flavor, hierarchy problem, strong CP,

• Weak states 3 mass states

• Quark, lepton flavors not conserved Unexplained observations (no theory of flavor):

- Three ("identical") generations
- Huge mass differences between and within the generations
- Universality of interactions
- CP violation
- Symmetry between lepton and quark sectors (GUT, scale?)

Experiments Seeking Insight into the Flavor Puzzle

•Sensitivity to New Physics at High Mass Scales •Unknown Couplings

Exotic Searches New physics if seen. Experiments limit how far we can go	$\mu \to e\gamma, 3e$ $\tau \to e\gamma, \mu\gamma$ $\mu^{-}N \to e^{-}N$ $K_{L}^{0} \to \mu e$ $\beta\beta_{0\nu}$ Lepton Number Violation
BSM Physics New physics if deviations from well- calculated SM predictions occur. Theory limits how far we can go	$e, \mu, n edm CP/T \text{ Violation}$ $(g-2)_{\mu}$ $\frac{\pi^{+}(K^{+}) \rightarrow e^{+}v}{\pi^{+}(K^{+}) \rightarrow \mu^{+}v}, \frac{\tau^{+} \rightarrow e^{+}vv}{\tau^{+} \rightarrow \mu^{+}vv} \text{ Universality}$ $K^{+} \rightarrow \pi^{+}vv, K_{L}^{0} \rightarrow \pi^{0}vv$ $B \rightarrow \mu\mu, b \rightarrow s\gamma, \qquad 7$

Example: Universality Tests Sensitive to high mass scales

Non-standard Higgs couplings

$$1 - \frac{R_{e/\mu}^{New}}{R_{e/\mu}^{SM}} \sim \mp \frac{\sqrt{2}\pi}{G_{\mu}} \frac{1}{\Lambda_{eP}^2} \frac{m_{\pi}^2}{m_e(m_d + m_u)} \sim (\frac{1TeV}{\Lambda_{eP}})^2 \times 10^3$$

0.05 % Measurement R_{e/µ} $\rightarrow \Lambda_{eP}$ >1000 TeV Charged Higgs mass m_{H[±]} ~200 TeV probed. Sensitivity to new physics $\sim \frac{1}{M_{H}^{2}}$

 $\frac{\tau \to e v \overline{v}}{\tau \to \mu v \overline{v}}$

LEP EW WG (W $\rightarrow \mu \overline{\nu}_{\mu}$)/(W $\rightarrow e \overline{\nu}_{e}$) $\textbf{0.9970} \pm \textbf{0.0100}$ FlaviaNet (K $\rightarrow \pi \ \mu \ \overline{v}_{u}$)/(K $\rightarrow \pi \ e \ \overline{v}_{e}$) $e - \mu$ 1.0010 ± 0.0025 Universality NA62, KLOE (K $\rightarrow \mu \overline{v}_{\mu}$)/(K $\rightarrow e \overline{v}_{e}$) 0.9980 ± 0.0025 Tests TRIUMF, PSI ($\pi \rightarrow \mu \overline{\nu}_{\mu}$)/($\pi \rightarrow e \overline{\nu}_{e}$) 1.0017 ± 0.0015 **HFAG Fit** $(\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau})/(\tau \rightarrow \mathbf{e} \overline{\nu}_{\mathbf{e}} \nu_{\tau})$ 1.0018 ± 0.0014 HFAG-Tau D. Bryman Italy \lg_{II}/g_{II} Summer 2011 0.9

8

Effective theory framework

CPV and **LFV**

Cirigliano IF Workshop 2013

At low energy, BSM physics is described by local operators; LFV and dipole moments probe strengths of different operators and their flavor structures

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

$$\Lambda \leftrightarrow M_{\text{BSM}} \qquad \qquad C_{i} \left[q_{\text{BSM}}, \ M_{a}/M_{b} \right]$$

Effective Operators for CP-violating EDMs and LFV processes:

Lavinac Paradisi

$$\overline{l_i}\sigma^{\mu\nu}\gamma_5 l_i F^{em}_{\mu\nu} \quad l_i \sigma^{\mu\nu} l_j F^{em}_{\mu\nu} \quad \overline{l_i}\Gamma^a l_j \overline{q_k}\Gamma^a q_l \quad \overline{l_i}\Gamma^a l_j \overline{l_k}\Gamma^a l_l$$
with dimensionless coefficients $\varepsilon \sim \frac{M_W^2}{M_{NP}^2} \frac{g_{NP}^2}{g_W^2} \delta_{CPV} \delta_{mix}$

Observable	Operator	Limit on ϵ
eEDM	$\overline{e_L}\sigma^{\mu u}\gamma_5 e_R F_{\mu u}$	$\leq 1.1 imes 10^{-3}$
${ m B}(\mu ightarrow e \gamma)$	$\overline{\mu}\sigma^{\mu u}eF_{\mu u}$	$\leq 1.4 imes 10^{-4}$
${ m B}(au o \mu \gamma)$	$\overline{ au}\sigma^{\mu u}\mu F_{\mu u}$	$\leq 2.2 imes 10^{-2}$
${ m B}(K^0_L o \mu^{\pm} e^{\mp})$	$(\overline{\mu}\gamma^{\mu}P_{L}e)(\overline{s}\gamma^{\mu}P_{L}d)$	$\leq 2.9 imes 10^{-7}$

Flavour physics of leptons and dipole moments Eur.Phys.J.C57:13-182,2008

Lepton Flavor Violation

Neutrino oscillations \rightarrow lepton family numbers not conserved

- Observation means new physics.
- Some SUSY models predict BR($\mu \rightarrow e\gamma$) near the experimental limit (always!). CLFV may also be observable at the LHC (Shadmi).

Sensitivity to new physics $\sim \frac{1}{M_{H}^{4}}$ with $M_{H} \sim 1-100$ TeV D. Bryman CLFV, Lecce, Italy

$\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ Conversion Test Different Operators

Model discriminating power by Measuring different processes.

Two operators:

$$\mathcal{L}_{CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_R \gamma_{\mu} e_L \bar{f} \gamma^{\mu} f$$

κ controls relative strength of dipole vs vector operator

De Gouvea, Vogel

There may also be important connections between models for CLFV, g-2, and neutrino mass generation e.g. via Seesaw types I, II, III..

Paradisi, Hambye

Flavor Physics Testing COMPOSITE HIGGS MODELS

 μe Conversion vs $\mu \rightarrow e\gamma$

Some parameters are not viable anymore.

Randall Sundrum Model Warped extra dimensions

$$K_L^0 \to \pi^0 v \overline{\nu} \text{ vs } K^+ \to \pi^+ v \overline{\nu}$$

Large parameter space open.

D. Bryman CLFV, Lecce, Italy

Bauer Redi

1st Conference on Charged Lepton Flavor Violation Conference Summary

Day 2-3 Experiments

Sawada, MEG:Status and Upgrades Berger, Mu->3e Brown, Mu2e Edmonds, COMET Stage 1 and 2 Natori, DeeMe Goudzovski, Kaon System: Rare Decay Experiments Hitlin, CLFV at BaBar Schawanda, CLFV at BELLE and BELLE-II Liu, CLFV at ATLAS Lusito, CLFV at CMS Khanji, Charged Lepton Flavor Violation at LHCb Tschirhart, Future Facilities Summary:

"Hope springs eternal" but

"Wishing does not make a poor man rich." (<u>Arabian Proverb</u>)

History of Some Rare Decay Experiments

Lepton Flavor Violation

Some LFV Limits and Prospects

Reaction

 $\mu + \to e + \gamma$ < 5.7 × 10-13 $\mu + \rightarrow e + e + e^- < 1.0 \times 10^-12$ μ -Ti \rightarrow e-Ti < 4.6 x 10-12 μ -Au \rightarrow e-Au < 7 x 10-13 $\mu + e^- \rightarrow \mu - e^+ < 8.3 \times 10^{-11}$ $\tau \rightarrow e\gamma \qquad < 1.1 \times 10^{-7}$ $\tau \rightarrow \mu \gamma$ < 4.4 × 10-8 $T \rightarrow \mu \mu \mu$ $\tau \rightarrow eee < 3.6 \times 10^{-8}$ $\pi 0 \to \mu e$ < 8.6 x 10-9 $KOL \rightarrow \mu e$ < 4.7 × 10–12 $K_+ \rightarrow \pi + \mu + e^- < 2.1 \times 10^{-10}$ $KOL \rightarrow \pi 0\mu + e^- < 3.1 \times 10^{-9}$ $Z0 \to \mu e$ < 1.7 × 10-6 $Z0 \to \tau e$ < 9.8 × 10-6 $Z0 \rightarrow \tau \mu$

Present limit < 2.1 × 10−8 < 1.2 × 10-5

Future Possibilities

6x10-14 (PSI) 10-16 (PSI) 10-14->10-16 (Fermilab, JPARC)

<10-9 (KEK Belle II)

~10-9 LHCb

10-11 NA62 Project X (?) 10-12 NA62 David Hitlin Christoph Schwanda

LFV τ Decays

D. Bryman CLFV, Lecce, Italy

LHCb Joining the LFV Club

 $\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 8.3(10.2) \times 10^{-8} \text{ at } 90\% (95\%) \text{ CL}$

 $\mathcal{B}(\tau^- \to \bar{p}\mu^+\mu^-) < 4.6(5.9) \times 10^{-7} \text{ at } 90\% \text{ (95\%)CL}$ $\mathcal{B}(\tau^- \to p\mu^-\mu^-) < 5.4(6.9) \times 10^{-7} \text{ at } 90\% \text{ (95\%)CL}$

Becoming Competitive.

New

Cautionary Tales

LFV Experiments	Limit Reached	Goal; (Result/Goal)	"Comments"
Badertscher et al. 1982 µ->e	7x10 ⁻¹¹		
TRIUMF TPC Ahmad et al. 1987 µ->e	4.6x10 ⁻¹²	2x10 ⁻¹² (2)	Data collection took 5x as long as originally guessed (1 month!)
SINDRUM II Bertl et al. 2006 µ->e	7x10 ⁻¹³ Au	"10 ^{-14" (1987)} -> 3x10 ⁻¹⁴⁽¹⁹⁹³⁾ "engineering" Ti (>60)	Flux lower by 10; pion suppression device didn't work; unanticipated high electron bkg.; shorter running.
MEGA Ahmed et al. 2002 μ->eγ	1.2x10 ⁻¹¹	0.9->4x10 ⁻¹³ "engineering" (133-35)	Death by a thousand blows to acceptance

Case Study I: MEGA at LAMPF

$$\mathcal{B} = \left(\frac{R_{\mu}}{d}\Delta t\right) \left(\frac{\Delta E_e}{m_{\mu}/2}\right) \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta}{2}\right)^2 f(\theta_{\gamma})\eta_{\rm IBV}.$$

TABLE VII. The contributions to the signal sensitivity of the MEGA experiment at the design stage and after a complete analysis of the data.

TABLE VIII. The contributions to the background sensitivity of the MEGA experiment at the design stage and after a complete analysis of the data.

Quantity	Designed	Achieved	Degradation factor	Quantity	Designed	Achieved	Degradation factor
	≤2.3	≤5.1	2.2	R_{μ} (MHz)	30.0	15.0	0.5
N _{eγ} (90% C.L.)				$t_{e\gamma}$ (ns)	0.8	1.6	2.0
$\Omega/4\pi$	0.42	0.31	1.4	E_e (MeV)	0.25	0.54	1.5
ϵ_{e}	0.95	0.53	1.8	E_{γ} (MeV)	1.7	1.7,3.0	1.6
ϵ_{γ}	0.051	0.024	2.1	$\theta_{e\gamma}$ (deg)	1.0	1.9	3.6
N _s	3.6×10 ¹⁴	1.2×10^{14}	3.0	θ_{γ} (deg)	10.0	10.0	1.0
Total factor		34.9	η_{IBV}	0.2	1.0	5.0	
				Total factor			43.3

Phys.Rev. D65 (2002) 112002

Case study II: SINDRUM II PSI

SINDRUM II SINDRUM II ue cenversier

- Proposed 10⁸ stops; (muE1) beam was only 10^7
- Designed "PMC" to kill pions; simulated; swamped unexpectedly by electrons; solenoid took years longer to obtain.
- Eventually went to very low momentum (50 MeV/c) killing pions by range; pion background persisted.
- Final result obtained in a couple of months; group had dispersed...." could have done better"....

Remarks: How to lose a factor 10 (100...) in a LFV experiment?

Tension between needing high rates and high sensitivities.

- Optimistic resolutions excessive rates or beam contamination?
- Optimistic acceptances extra losses due to cuts?
- Missing background sources e.g. due to high energy production or multiple low probability events ...
- Cosmic rays and other effects?
- Fill in your own....

Ryu Sawada

MEG

Top view:

Eur. Phys. J. C 73 (2013) 2365

Front view:

Dedicated detector with asymmetric coverage ($\Omega_{MEG}/4\pi = 11\%$):

- 1. Liquid Xenon photon calorimeter with excellent position, time and energy resolutions
- 2. Low-mass positron spectrometer with gradient B-field for fast positron sweep out
- 3. Stable, well monitored & calibrated detector (arsenal of calibration & monitoring tools)
- 4. High performance DAQ system (multi-GHz waveform digitization of nearly all 3k channels)

D. Bryman CLFV, Lecce, Italy

MEG Experiment at PSI

D. Bryman CLFV, Lecce, Italy

24

arXiv:1303.0754

MEGCurrent result (2013)B $< 5.7 \ge 10^{-13}$ (90% c.l.)(Additional data to be analyzed)

MEG 2013 Upgrade Plan $\rightarrow 6 \times 10^{-14}$

TABLE XI: Resolution (Gaussian σ) and efficiencies for MEG upgrade

PDF parameters	Previously Forseen	Present MEG	Upgrade scenario
e ⁺ energy (keV)	(200)	306 (core)	130
$e^+ \theta$ (mrad)	(5)	9.4	5.3
$e^+ \phi$ (mrad)	(5)	8.7	3.7
e ⁺ vertex (mm) Z/ Y(core)		2.4/1.2	1.6/0.7
γ energy (%) (w <2 cm)/(w >	(1.2)	2.4 / 1.7	1.1/1.0
γ position (mm) $u/v/w$		5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	(65)	122	84
Efficiency (%)			
trigger		≈ 99	≈ 99
γ		63	69
e ⁺		40	88

signal PDF contours at 1, 1.64 and 2 sigma

Data 2009-2011

Niklaus Berger

$\mu \rightarrow 3e$ at PSI: Goal $< 10^{-16}$

Mu3e proposal

Phase I uses MEG beamline to provide ~ $10^8 \mu^+$ /s to get to 10^{-15} Phase II assumes construction of new high intensity beam at PSI spallation neutron source to reach 10^{-16}

D. Bryman CLFV, Lecce, Italy

Figure 17.2: Reconstructed mass resolution for signal events in the phase IA configuration.

Figure 17.9: Internal conversion background (colours) and signal (black dots) in the acoplanar momentum - reconstructed mass plane for the phase IA detector configuration.

	Phase IA	Phase IB	Phase II
Backgrounds:			
Michel	0	$< 2.5 \cdot 10^{-18}$	
$\mu \rightarrow e e e e \nu \nu$		$1 \cdot 10^{-17}$	
$\mu \rightarrow eee\nu\nu$ and accidental Michel		$< 2.5 \cdot 10^{-21}$	
Total Background	$1 \cdot 10^{-16}$	$1 \cdot 10^{-17}$	$2.3 \cdot 10^{-17}$
Signal:			
Track reconstruction and selection efficiency	26%	39%	38%
Kinematic cut (2σ)	95%	95 %	95 %
Vertex efficiency $(2.5\sigma)^2$	98%	98%	98 %
Timing efficiency $(2\sigma)^2$	-	90 %	90 %
Total efficiency	24%	33%	32~%
Sensitivity:			
Single event sensitivity	$4 \cdot 10^{-16}$	$3 \cdot 10^{-17}$	$7 \cdot 10^{-17}$
muons on target rate (Hz)	$2 \cdot 10^{7}$	$1 \cdot 10^{8}$	$2 \cdot 10^{9}$
running days to reach $1 \cdot 10^{-15}$	2600	350	18
running days to reach $1 \cdot 10^{-16}$	-	3500	180
running days to reach single event sensitivity	6500	11700	260

D. Bryman CLFV, Lecce, Italy

$$\mu^- N \rightarrow e^- N$$
 Experiments

- Singles experiment allows ultra-high beam rates.
- Intrinsic background (decay-in-orbit) known and calculable. Czarnecki et al.

$$N(E_e)dE_e \simeq 0.4 \cdot 10^{-21} \left(1 - \frac{E_e}{E_{\text{max}}}\right)^5 dE_e$$

PRD84,013006,2011

Radiative corrections under study.

- High resolution detector feasible.
- Proposed improvements > 10⁴

Hiroaki Natori

JPARC: DeeMe

$\mu^{-}N \to e^{-}N$ at $<10^{-14}$

JPARC: DeeMe

Sensitivity and Backgrounds

- Signal Sensitivity
 - S.E.S.: 2×10⁻¹⁴ (1 MW, 2×10⁷sec)
- Backgrounds
 - $R_{AP} < 9 \times 10^{-18}$
 - Detector live-time Duty = 1/20000

DIO Background	0.09
After-Proton Background	< 0.027 (<0.05 90%CL)
Cosmic-Muon Induced Electron BG	<0.018 (MC stat. limited)
Cosmic-Muon Induced Muon BG	<0.001
Radiative Muon Capture BG	<0.0009

Signal Region: 102.0 -- 105.6 MeV/c

 $\mu^- N \rightarrow e^- N$ at 10^{-16}

Lobashov, Djilkibaev $(1980 \rightarrow 1989)$: **Solenoid Pion Collector; flux x 1000.**

Moscow Meson Factory***

D. Bryman CLFV, Lecce, Italy

Backgrounds

- For $R_{\mu e} = 10^{-15}$ ~40 events / 0.41 bkg ~4 events / 0.41 bkg (LHC SUSY?)
- For $R_{\mu e} = 10^{-16}$

Background	Size	Uncertainty	Source of Uncertainty
Muon Decay-In-Orbit	0.22	± 0.06	Acceptance and Energy Loss Modeling
Antiproton RPC	0.10	± 0.05	Cross-Section and Acceptance
Cosmic Rays	0.05	± 0.05	Statistics of Sample
Radiative Pion Capture	0.03	± 0.007	Acceptance and Reconstruction
Muon Decay-in-Flight	0.01	± 0.003	Cross-Section, Acceptance and Modeling
Pion Decay-in-Flight	0.003	± 0.0015	same
Beam Electrons	0.0006	± 0.0003	same
Radiative Muon Capture	$< 2 \times 10^{-6}$		Calculation
Sum	0.41	± 0.08	Added in Quadrature

numbers are changing at 10% level as experiment matures

R. Bernstein, FNAL

IF Workshop 25 April 2013 Mu2e 24

CLFV, Lecce, Italy D. Bryman

Andrew Edmonds

COMET at JPARC

$\mu^- N \rightarrow e^- N$ at 10^{-16}

°0.1 № 0.09

0.07 0.00

> 0.05 0.04 0.03 0.02

> > 100.5 101

Engineering runs >2016

Comet Phase I Goal

s.e.s. $3x10^{-15}$

D. Bryman CLFV, Lecce, Italy

101.5 102

102.5 103 103.5 104

104.5 105 MeV/c

COMET Phase I: Background Studies

COMET Detector for Background measurements

- Proton Extinction
- Particle content, rates, especially pbars
- Others?

Useful Advanced Measurements for μ -e Conversion Experiments

•Extinction rate

•...

- •Particle fluxes (e, μ , π ,K, \overline{p} ...)at detector (Comet phase I)
- p and n rates from μ Capture (in the works at PSI)
- •Cosmic rays could be done in a test setup?
- •Radiative pion capture -> 100MeVelectrons?
- •*P*bar background rate -> 100MeVelectrons?

General questions for high sensitivity μ -e Conversion Experiments

- •What are the uncertainties and risk factors in the background, acceptance estimates?
- •How are the backgrounds to be measured during the experiment?
- •How is a blind analysis to be done?
- •What would make a believable signal?

LFV in Kaon Decays: NA62 Triggering on lepton pairs

NA62 three-track decay rate upstream CHOD: F_{3track} = 640 kHz
→ Too high to collect all three-track decays (as NA48/ 2 did)

Available L0 trigger primitives:

 Q_N: at least N hodoscope quadrants;
 LKR_N(x): at least N LKr clusters with energy E>x GeV;

MUV_N: hits in at least N MUV3 pads.

Possible L0 triggers for LFV searches:

ee pair:	$Q_2 \times LKR_2(15)$
μe pair:	$Q_2 \times LKR_1(15) \times MUV_1$
μμ pair:	$Q_2 \times MUV_2$

S.E.S 10^{-12}

Total lepton pair L0 rate (dominated by $K^+ \rightarrow \pi^+ \pi^- \pi^-$): F = few × 10 kHz \rightarrow Charge-blind lepton pair collection is feasible E. Goudzovski/CLFV/Lecce, 7 May 2013

D. Bryman CLFV, Lecce, Italy

$\tau \rightarrow \mu, \tau \rightarrow e, \mu \rightarrow e$ Rates are Model Dependent!

Third generation effects could dominate.

D. Bryman CLFV, Lecce, Italy

Mannel

D. Bryman CLFV, Lecce, Italy

Belle II Sensitivity to LFV

Decay channel	Belle limit	BABAR LIMIT	Belle II proj. $(5 ab^{-1})$	Belle II proj. (50 ab^{-1})	SUPERB PROJ. ¹ (75 ab ¹)
$\tau \rightarrow \mu \gamma$	4.5 · 10 8 [26]	4.4 · 10 ⁸ [27]	$10 \cdot 10^{-9} [42, 43]$	$3 \cdot 10^{-9}$ [42,43]	$1.8 \cdot 10^{-9}$ [96]
$\tau \rightarrow e\gamma$	$12 \cdot 10^{-8}$ [26]	$3.3 \cdot 10^{-8}$ [27]	and first Loos About	100 00-00 1 0000-001	$2.3 \cdot 10^{-9}$ [96]
$\tau \rightarrow \mu \mu \mu$	$2.1 \cdot 10^{-8}$ [34]	$3.3 \cdot 10^{-8}$ [28]	$3 \cdot 10^{9} [42, 43]$	$1 \cdot 10^{-9}$ [42,43]	$2 \cdot 10^{-10}$ [96]
$\tau \rightarrow eee$	$2.7 \cdot 10^{-8}$ [34]	$2.9 \cdot 10^{-8}$ [28]		AND COMPANY LONGING AND	$2 \cdot 10^{-10}$ [96]
$\tau \rightarrow \mu \eta$	2.3 . 10 8 25	15 · 10 ⁸ [33]	$5 \cdot 10^{-9}$ [42,43]	$2 \cdot 10^{-9}$ [42,43]	$4 \cdot 10^{-10}$ [96]
$\tau \rightarrow e\eta$	4.4 · 10 8 [25]	$16 \cdot 10^{-8}$ [33]	100 0000 AMAGADA A	104 (CLA) +010822-040	$6 \cdot 10^{-10}$ [96]
$\tau \rightarrow \mu K_S^0$	$2.3 \cdot 10^{-8}$ [35]	4.0 · 10 8 [31]			$2 \cdot 10^{-10}$ [96]
$\tau \rightarrow e K_S^0$	$2.6 \cdot 10^{-8}$ [35]	$3.3 \cdot 10^{-8}$ [31]			$2 \cdot 10^{-10}$ [96]

Table 3.3: Measured and projected limits on selected lepton flavour violating τ decays (90 % *C.L.*). ¹ The SuperB projections assumed a polarized electron beam; they also assumed that all backgrounds except initial state radiation can be suppressed to the desired level. The SuperB project was canceled in November 2012.

LHCb is now also a player.

LFV at the LHC

LFV topics at ATLAS

- SUSY $\widetilde{\nu}_{\tau}$ to eµ/eT/µT search
 - ✓ 7TeV 35pb⁻¹, publication on PRL : <u>Phys. Rev. Lett.106,251801</u>
 - ✓ 7TeV 1fb⁻¹, publication on EPJC: EPJC Vol.71, 12(2011)1809
 - ✓ 7TeV 5fb⁻¹, publication on PLB : <u>PLB_29354</u>
- Z'→ eµ search
 - $\checkmark 7 \text{TeV}$ 35pb⁻¹, published together with $\widetilde{\nu}_{r}$ on PRL
 - \checkmark 7TeV 1fb⁻¹, published together with $\widetilde{\nu}_{_{\tau}}$ on EPJC
- stop →eµ continuum search
 - ✓ 7TeV 2fb⁻¹, publication on EPJC: Eur. Phys. J. C (2012) 72:2040
- (\geq)4-lepton search
 - ✓ 7TeV, 5fb⁻¹, published on JHEP: <u>JHEP12(2012)124</u>
 - ✓ 8TeV, 21fb⁻¹, conference note for Moriond: <u>ATLAS-CONF-2013-036</u>
- µ+displaced vertex
 - ✓ 7TeV 35pb⁻¹, published on PLB: Physics Letters B 707 (2012) 478-496
 - ✓ 7TeV 5fb⁻¹, published on PLB: Physics Letters B 719 (2013) 280-298

Minghui Liu

Limits to new physics

Letizia Lusito

CMS Searches

Outline

1 Motivation

- Physics motivations
- The CMS detector

2 Narrow resonances

- Search for narrow resonances in dilepton mass spectra

3 Heavy neutrinos

- Search for heavy lepton partners of neutrinos in pp collisions at cs = 7 TeV, in the context of the Type III seesaw mechanism.
- Search for heavy Majorana neutrinos in $\mu^{\pm}\mu^{\pm}$ +jets and $e^{\pm}e^{\pm}$ +jets in pp collisions at ${\it S}$ = 7 TeV
- Heavy neutrino and right-handed W of the left-right symmetric model

4 Leptonic-RPV SUSY searches

- Search for RPV supersymmetry with three or more leptons and b-tags
- Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags

Heavy Majorana Neutrino

Tschirhart

Project X Staging Plan

	Present complex with PIP*	Stage 1 Project X 1 GeV CW Linac	Stage 2 Project X 3 GeV CW Linac
8 GeV Muon	20 kW	0 – 20 kW	0 – 20 kW
1 GeV Muon	None	80 kW	none
3 GeV Muon	None	None	1000 kW
Kaon Program	0 – 30 kW	0 – 75 kW	1100 kW

* PIP = Proton Improvement Plan

Example of an Experimental Program at Fermilab Project X

	Present complex with PIP*	Stage 1 Project X 1 GeV CW Linac	Stage 2 Project X 3 Gev CW Linac
Mu2e	Х	Х	Х
g-2	Х	X (1 GeV into Booster)	
$\mu \rightarrow e\gamma$			Х
$\mu \to 3 e$			Х
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	Х	Х	Х
$K_L^0 \to \pi^0 \nu \overline{\nu}$			Х
EDM		Х	Х

* PIP = Proton Improvement Plan

Concluding Observations

- Charged lepton flavor violation experiments are powerful searches for new physics at high mass scales
- CLFV remains popular in most BSM theories but target sensitivities are obscure and gains in mass scale (Br~1/M⁴) are slow
- Big gains in experimental sensitivity are in the works
- Worthwhile to keep at it until BSM physics becomes clearer or experimental capabilities wane (or experiments become too expensive)