Introduction to Kalman controls for MultiSAS

Mark Beker

Advanced Virgo (())

GWADW 2013, Elba, Italy M.Beker@Nikhef.nl

Reminder: MultiSAS is a multi-stage seismic isolation system for aVirgo in-vacuum optical benches

• Kalman filter

Wiener filtering

Solve all three using general LMMSE estimation

 $\hat{\theta} - \mathbf{C} \circ \mathbf{C}^{-1} \mathbf{x}$

- Lost in 1-D space
- Position *y(t)*
- Assume Gaussian distributed measurements

- Sextant measurement at t_1 : Mean = z_1 and Variance = σ_{z1}
- Optimal estimate of position is: $\hat{y}(t_1) = z_1$
- Variance of error in estimate: $\sigma_x^2(t_1) = \sigma_{z1}^2$
- Boat in same position at time t₂ <u>Predicted</u> position is z₁

- So we have the prediction $\hat{y}^{-}(t_2)$
- GPS measurement at t_2 : Mean = z_2 and Variance = σ_{z2}
- Need to correct the prediction due to measurement to get $\hat{y}(t_2)$
- Closer to more trusted measurement linear interpolation?

- Corrected mean is the new optimal estimate of position
- New variance is smaller than either of the previous two variances

- Now we add a physical model
- The boat moves with velocity v = dy/dt

- At time t_3 , boat moves with velocity v = dy/dt
- Naïve approach: Shift probability to the right to predict new position
- This would work if we knew the velocity exactly (perfect model)
- Better to assume imperfect model by adding Gaussian noise

- Now we take a measurement at t₃
- Need to once again correct the prediction
- Corrected mean is the new optimal estimate of position
- New variance is smaller than either of the previous two variances

Kalman filter – conceptual description Lessons learnt

Prediction

Make a prediction based on previous data and model

Take a measurement

Correction

Use measurement to correct prediction by 'blending' prediction and residual

Optimal estimate = Prediction + (Kalman gain) * (Measurement - Prediction)

Residual

Low measurement variance (good measurements) Kalman gain increases Rely more heavily on measurements

Low process variance (good model) Kalman gain decreases Rely more heavily on prediction

MultiSAS Control

MultiSAS vertical control Step 1: Define (state space) model

$$\begin{bmatrix}
\dot{y}_{1} \\
\dot{y}_{2} \\
\dot{v}_{1} \\
\dot{v}_{2} \\
\dot{v}_{1} \\
\dot{v}_{2}
\end{pmatrix} = \underbrace{\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{-(k_{1}+k_{2})}{m_{1}} & \frac{k_{2}}{m_{1}} & \frac{-(\gamma_{1}+\gamma_{2})}{m_{1}} & \frac{\gamma_{2}}{m_{1}} \\
\frac{k_{2}}{m_{2}} & \frac{-k_{2}}{m_{2}} & \frac{\gamma_{2}}{m_{2}} & \frac{-\gamma_{2}}{m_{2}}
\end{array}\right]}_{A_{p}} \underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
v_{1} \\
v_{2}
\end{array}\right]}_{X_{p}} + \underbrace{\left[\begin{array}{c}
0 \\
0 \\
\frac{k_{1}}{m_{1}} \\
0
\end{array}\right]}_{B_{p}} u_{y} + \underbrace{\left[\begin{array}{c}
0 \\
0 \\
\frac{k_{1}y_{0}+\gamma_{1}v_{0}}{m_{1}} \\
0
\end{array}\right]}_{B_{u}u_{d}}, \\
\underbrace{\left[\begin{array}{c}
y_{1}y_{0} \\
y_{2} \\
\frac{y_{1}}{m_{1}} \\
\frac{y_{1}y_{0}}{m_{1}}
\end{array}\right]}_{Y_{p}} = \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{C_{p}} \underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
v_{1} \\
\frac{y_{2}}{v_{1}}
\end{array}\right]}_{X_{p}}. \\
\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{1} \\
\frac{y_{1}}{w_{1}} \\
\frac{y_{1}}{w_{1}}
\end{array}\right]}_{Y_{1}} \underbrace{\left[\begin{array}{c}
0 \\
0 \\
\frac{k_{1}}{m_{1}} \\
\frac{k_{2}}{m_{1}}
\end{array}\right]}_{Y_{1}} (5.15)$$

- 1. Define model, derive equations of motion, create state space model
- 2. Generate Kalman observer $\mathrm{K}_{\mathrm{est}}$ and LQR gain matrix K
- 3. Combine K_{est} and K to make LQR (MISO regulator)

MultiSAS vertical control Step 1: Define (state space) model

MultiSAS vertical control Step 2: Find Kalman state estimator (observer)

- Provide:
 - Measurement noise covariance Q
 - Process noise covariance R
- Shaping filters are used to account for non-Gaussian noise
- K_{est} is the Kalman gain matrix
 - Can be adaptive to varying noise covariance's
- Observes all the states of the system
 - Also those that are not measureable
- Blends the LVDT and geophone signals according to sensitivity and dynamics

MultiSAS vertical control Step 3: Find LQR gain matrix

- Linear Quadratic Regulator
- Minimizes a quadratic cost function in order to weigh the (observed) states and output in an optimal way
- In the case of MultiSAS, provides a single output to the force actuator
- LQR + Kalman observer

Linear Quadratic Gaussian (LQG) Control

Testing control performance with noise injection

Force disp. transfer function, LVDT(v,) Geophone (v₂) 20 20 0 (dB) -20 -40 Magnitude (dB) 100000000 "Traditional" PID • Open loop 40 Gain=0.5 With sensor corrected LVDT -60 Gain=1 Gain=2 (Trillium ground noise -60-80 180 r 180 subtracted) 90 Phase (deg) Phase (deg) 90 -90 -90 LQG with LVDT and geophone -180 -180 10^{-1} 10^{-1} 10^{0} 10^{0} 10^{1} 10^{1} Frequency (Hz) Frequency (Hz) Force disp. transfer function, LVDT(v,) Geophone (v) 20 ulletMagnitude (dB) ---- Q=20,Q,,,=1 - Q=50,Q_=1 -60 Q=100,Q__=1 ······ Q=100,Q_w=10 -80 -60180 180 Phase (deg) 90 Phase (deg) 9(-90 -90 -180 -180 10° 10^{-1} 10^{0} 10^{-1} 10^{1} 10 ¹∉requency (Hz) Frequency (Hz)

Control performance with environmental noise only

Current status and planning

- Prototype
 - MultiSAS (in air) performance tests complete
 - Installation and testing of MiniTower (vacuum chamber) complete
 - Installation of MultiSAS into MiniTower underway
 - Long term tests continuing
 - Optimal control design continuing
- Advanced Virgo
 - Production of five units started
 - Installation of first system (SIB2) on April 2014
 - Ready for IFO commissioning by end of October 2014

Current status and planning

- Prototype
 - MultiSAS (in air) performance tests complete
 - Installation and testing of MiniTower (vacuum chamber) complete
 - Installation of MultiSAS into MiniTower underway
 - Long term tests continuing
 - Optimal control design continuing
- Advanced Virgo
 - Production of five units started
 - Installation of first system (SIB2) on April 2014
 - Ready for IFO commissioning by end of October 2014

Summary

Backup

Vertical transfer function measured in stages

- Other structures associated with support frame

Open-loop transfer functions

Kalman observer shaping filters

Horizontal control

