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Reminder: MultiSAS is a multi-stage seismic isolation
system for aVirgo in-vacuum optical benches

2:102 m/VHz @ 10 Hz

3.3-:10"> rad/vHz @ 10 Hz
24:10®m

0.033-10° rad ((@)};;
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The “optimal” control problem

Top stage\ Top filter

*  Minimize motion of the bench
* by applying a force at the top stage
only
* given (displacement) sensor on top

stage
* and (inertial) sensor on bench Ground

Top wire Inverted
pendulum

\!

* MultiSAS dynamics governs Intermediate Caya oot
relationship between the inputs Bottom wire
 Some states not measured directly 1>
( Bench )
* Measurement noise
xX|n]
e Lets first consider a simpler (1D)
example T T T
* How can we make an “optimal” 2 ? >
. . . | 1 ‘ 3 4 5
prediction given the past \ - J n

measurements 5‘\:[5]\j
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Wiener vs Kalman filtering

g

Least squares
T ¢ T
o l® 3,4
* Has no “knowledge” of the system M
. : X151
Wiener filter
* X[n] =s[n] + w[n] -> “estimate s[n] so as to minimize the error”
» Stationary processes — The statistical properties of the inputs don’t change in t
e Causal, length grows, (generally) non-recursive

wn —@

* Minimizes the sum of squares of the errors i >

* For discrete samples reduces to least squares solution
Kalman filter

* Generalization for Wiener filter to non-stationary processes — The signal is
characterized by a dynamical model

* Recursive —don’t need to re-evaluate all data at each step
* Uses prior knowledge of the system

= Requires a dynamic (state space) model
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Kalman filter — conceptual description
Boat in 1-D space

* Lostin 1-D space
* Position y(t)
e Assume Gaussian distributed measurements
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Kalman filter — conceptual description
Boat in 1-D space

0.3r
0.25¢
0.2¢
0.15¢
0.1

Measurement at t;

0.05¢

OO 20 40 60 80 100

Position, y [m]

e Sextant measurement at t;: Mean =z, and Variance = 0,4
e Optimal estimate of position is: y(t,) = z,
e Variance of error in estimate: 02, (t;) = 0%,

e Boatin same position at time t, - Predicted position is z,
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Kalman filter — conceptual description

0.3r

0.25¢

0.2¢

0.15¢

0.1r

0.05¢

Boat in 1-D space

<€— Measurement at t,

Predicted pos. ¥ (t,)

20

40 60 80 100
Position, y [m]

e So we have the prediction y(t,)

e GPS measurement at t,: Mean =z, and Variance = 0,,

e Need to correct the prediction due to measurement to get y(t,)

e Closer to more trusted measurement — linear interpolation?
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Kalman filter — conceptual description
Boat in 1-D space

0.3} ﬂ
w_ Corrected optimal
0-251 estimated pos. ¥ (t,)
0.2
015l €— Measurement at t,
0.1F : N
Predicted pos. ¥ (t,)
0.05f
0 1 ‘ B} ‘
0 20 40 60 80 100

Position, y [m]
e Corrected mean is the new optimal estimate of position
e New variance is smaller than either of the previous two variances
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Kalman filter — conceptual description
Boat in 1-D space

Now we add a physical model
The boat moves with velocity v = dy/dt




Kalman filter — conceptual description
Boat in 1-D space

v (t 0.3r ﬁ ,"l
0.25 . € Naive prediction of ¥ (t;)
0.2 P
0.15/
011 I‘v “ |Prediction of y(t.)
LN s
I d |corrected for noise
0.05 d
Il l ! ‘\
’ / \ \~
0 1 -l = / RN ~
0 20 40 60 80 100

Position, y [m]

e Attime t;, boat moves with velocity v = dy/dt
e Naive approach: Shift probability to the right to predict new position
e This would work if we knew the velocity exactly (perfect model)

e Better to assume imperfect model by adding Gaussian noise
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Kalman filter — conceptual description

Boat in 1-D space

0.3r

0.25¢

0.2¢

0.15¢

0.1r

0.051

”

0
0

20

rected optimal

imated pos. y (t;)

easurement at t3

|Prediction of y(t;)
|corrected for noise

40 60 100

Position, y [m]

e Now we take a measurement at t,

e Need to once again correct the prediction

e Corrected mean is the new optimal estimate of position

e New variance is smaller than either of the previous two variances
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Kalman filter — conceptual description
Lessons learnt

Prediction
Make a prediction based on previous data and model

\ 4

Measurement
Take a measurement
Correction
Use measurement to correct prediction by ‘blending’ prediction and residual
Optimal estimate = Prediction + (Kalman gain) * (Measurement - Prediction)
1 )

|
Residual
Low measurement variance Low process variance
(good measurements) <:> (good model)
Kalman gain increases Kalman gain decreases
Rely more heavily on measurements Rely more heavily on prediction
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MultiSAS Control

Stepper motor and
micro-spring fishing rods

Top stage =

Top filter

Geophone :
& Vertical
. . . voice coil
Horiz. voice coil / LVDT

/ LVDT
Reference
frame

Top IP flexure

Inverted
pendulum =

Intermediate

Bottom filter

IP flexure
AN Wire to bench
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MultiSAS vertical control
Step 1: Define (state space) model

o | [0 0 1 O 1 [w] [ 0] 0]
' 0 0 0 1 0 0
zj — —(k1+k2) ke —(mty2) 2 gj + k1 Uy + kiyo+vyivo |
. . — ~ m2 m2 —~ m2 m2 - —~ v NG ~ — . -~ —
Xp Ap Xp Bp Buud
(5.14)
L YA I IIIIVE
(A1 ‘ Tyo
Yvat | |1 0 0 0O Y2
[ Ygeo ] - [ 0 0 01 v | Yivar ky =) (5.15)
yp Cp - M - ¥ yéfz
Xp T Ty,
1. Define model, derive equations of motion, create
k. ==y
state space model 2 2
2. Generate Kalman observer K, and LQR gain matrix
K [ m2 JTy2
3. Combine K_, and K to make LQR (MISO regulator)
~(Geanhone
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MultiSAS vertical control
Step 1: Define (state space) model

40— 40—
I IIIIIVE i\ Geophone |
1Y,
on bench
ylvdt kl I:_jyl
N J
i A m
A ‘ ‘ | | ,
: ‘ —— Meas. y1/uy |
k2 I:_ij 7 --- Modely /u, | ’g 90 H=====] T
o O
[ 1 n
[ m, ] I | 'QC“_S 90| = oo | —— Meas. v2/uy
E — Model v
~Geophone = —180H——— D e
10 10 10 10

Frequency (Hz) Frequency (Hz)
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MultiSAS vertical control
Step 2: Find Kalman state estimator (observer)

: d n,
* Provide: ¥ ¥
. : %4 Wy
* Measurement noise covariance Q d T
: : w (Y
* Process noise covariance R U — d% P y O > Yivae
. L y O ,
* Shaping filters are used to account "X, > Ygeo
for non-Gaussian noise W,
* K. is the Kalman gain matrix ",
* (Can be adaptive to varying noise X— K, <
covariance’s )
201 ]
* Observes all the states of the T
system S . e AT T ,
* Also those that are not N \:/—"\
measureable . o ‘
180 R ‘
 Blends the LVDT and geophone o Q0f e S R
signals according to sensitivity and S O BN
. § -90[—y est.basedonu | N7
dynamics & 10|~y ot based on vt
----- y, est. based on geo

I
-2 -1 0

(S 10 10 10 10
N I..E F 16 Frequency (Hz) }}jmd
LS irgo




MultiSAS vertical control
Step 3: Find LQR gain matrix

. . d n
* Linear Quadratic Regulator ¢ ¢
W, Wy
e e . . Wy y ,éw]-‘ > U,

* Minimizes a quadratic cost function cl)_> P Y vdt
in order to weigh the (observed) Y, > Yeeo
states and output in an optimal JE— MISO regulator W
way | A Tsz

Uy % X K <
est

- - ————————

* In the case of MultiSAS, provides a
single output to the force actuator

e LQR + Kalman observer

Linear Quadratic Gaussian (LQG)
Control
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Testing control performance with noise injection

Geophone (v2)

Force disp. transfer function, LVDT(v1)

o

“Traditional” PID

— With sensor corrected LVDT 1
(Trillium ground noise -60-
subtracted)

Magnitude (dB)
R
o

Phase (deg)
o

qgoliii  NF AT
1 0

Frequency (Hz)
Force disp. transfer function, LVDT(v1)

LQG with LVDT and geophone _

Magnitude (dB

Phase (deg)

_180LLiil /! 3:::“0,”3 R 1
10 10 10
1&requency (Hz)

10 10 10’

)
o
% 20+ P P NN
3 HE H H H
'g 40— Opgn loop |-
@ | Gain=0.5 | PNy ‘
= _60(----Gain=1 | .
— Gain=2 ‘ P
-80 ‘
=)
[}
A=)
P | I SR - N N YN N .
2]
@
<
D_ ,,,,,,,,,,,,,,,,,,,,
HE
—180 b TR DT E— =
10 10 10

Frequency (Hz)
Geophone (v2)

Magnitude (dB)

Phase (deg)

107 10° 10
Frequency (Hz)



Control performance with environmental noise only
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Current status and planning

* Prototype

MultiSAS (in air) performance tests
complete

Installation and testing of MiniTower
(vacuum chamber) complete

Installation of MultiSAS into MiniTower
underway

Long term tests continuing
Optimal control design continuing

* Advanced Virgo

Production of five units started

Installation of first system (SIB2) on
April 2014

Ready for IFO commissioning by end of
October 2014
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* Prototype

* MultiSAS (in air) performance tests
complete

* Installation and testing of MiniTower
(vacuum chamber) complete

e |nstallation of MultiSAS into MiniTower
underway

* Long term tests continuing
e Optimal control design continuing

* Advanced Virgo
* Production of five units started

* Installation of first system (SIB2) on
April 2014

* Ready for IFO commissioning by end of
October 2014
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Summary
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Backup
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Vertical transfer function measured in stages
a

—
o
N
T

—h
o
A
T

Total vertical transfer

)

-6} ——Base to top stage
——Base to int. stage
—nt. to bench SRR
—Total (Green x black)]

—_
o

-8

10 5 0

10 10 10 10
Frequency [Hz]

- Attenuation of 10° @ 30 Hz

- Top-stage bouncing and key-stone modes visible

- Other structures associated with support frame
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Phase (deg)

Magnitude (dB)

Open-loop transfer functions

100

From: In(1) To:u

50r

——Geo tou

——Cl. loop Geo

- ==Cl. loop LVDT

=50

-
-
———————————

540r

360

180

-180*-

10"

Frequency (Hz)
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Measured and modeled noise [m/VHZz]

Kalman observer shaping filters

—
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— Disturbance (seismic)
-=+=Geophone noise
=-==L.VDT noise

-2 107 10° 10"

Frequency [HZz]
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Horizontal control

Top stage
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Top stage motion, x [mMA/HZ]
> o

|
©

Intermediate
stage

L| ===-Ground motion|.

10
—— Open loop
_oll ="~ PID Gain=10
10 5 =
10 10

10° 10

Frequency [Hz]

y

Top stage rotation, 6 [rad/VHz]

-4

10

10

10

10

10

10

-10

_5>

_6»

_7>

_8»

_9,

—Openlloop
+=+=PI|D Gain=1

10
10

-2

107 10
Frequency [Hz]

0

10

[N
NIQSEEF

27



