Lessons from commissioning cryogenic systems underground

May 20, 2012 GWADW2013 at Elba, Italy

Osamu Miyakawa(ICRR, UTokyo) and KAGRA collaboration

JGW-G130166

GWADW 2013 at Elba, Osamu Miyakawa

Kamioka site

• CLIO and KAGRA are located in Kamioka mine underground

Gifu Pre.

Kamioka

CLIO

KAGRA Image

- Laboratory area with Super Kamiokande, XMASS, Kamland etc.
- 220km away from Tokyo
- 360m altitude
- Mountain consists of very hard rock
 - 5 [km/sec] sound speed
 - Low seismic noise environment

Underground site is QUIET

iKAGRA

- Room-temp. FPMI
- Low laser power (10W)
- Simple seismic isolation
- 10kg silica TM

bKAGRA

- Cryogenic RSE
- High laser power (180W)
- Low frequency seismic isolation
- 23kg sapphire TM

- The project started in 2010
- Due to the March 11 earthquake (2011), budget implementation was delayed and whole the schedule shifted 1 year behind.
- Construction of tunnels is in progress.
- KAGRA will be in 2 stages: iKAGRA and bKAGRA

KAGRA KAGRA tunnel entrance (New Atotsu)

KAGRA Y end area for chamber location

JGW-G130166

KAGRA Vacuum System

12m, Φ800mm x 478 => 3km x 2

Press to form a duct

Bellows for each duct

Baking at MIRAPRO Co. Noda/MESCO, Kamioka

JGW-G130166

Test at MIRAPRO Co. Noda

Y. Saito JGW-G1200988-v1

Ultra-Low Vibration Refrigerator - vibration reduction performance

Reduction of the 4K vibration

The values show mainly the operation frequency vibration.

KAGRA

Excess Heat Radiation KAGRA Indirect radiation from 300K is large. We neglected it first... Mirror Outer radiation shield 40 K 20 K etore 300 K • We put radiation shields inside the inner shield.

An essential resolution is to have baffles or "black" radiation shield ducts .

20

•Suspension thermal noise was reduced, as the aluminum wires were cooled;

- 1. 242K 5/19/2009
- 2. 212K 5/20/2009
- 3. 79K 5/26/2009

•A big jump from 212K to 79K, because of too much creaks when structures were shrinking to measure noise or to keep lock. Creaks vanished below 100K.

KAGRA What learned form cryogenic experiences

- Thermal conduction is the only method for cooling.
 - -Mirror is always heated by laser.
 - Mirrors are in high vacuum (10⁻⁵Pa), so no convection or no radiation works for cooling.
 - -Heat on mirror is sucked through wire's conduction.
- Height adjustment
 - -Thermal shrink of suspension wires for 2-4 mm.
- Contaminations on the mirror by small leakage shown as change of cavity reflectivity
 - –Needed a careful check for O-ring, gate valve with a leak detector
- Eddy current damping force using magnets is too strong in low temperature and the mass will be stuck to outer magnet frame.

KAGRA trouble, trouble, trouble... 🐟 🗢

(1) 5/17/2009 - 6/10: Inline near.reduced pendulum thermal noise, contamination

- (2) 6/19 9/7: Inline near 27k, Trouble for a touching mirror
 - : Inline near, 27K.
- (4) 7/31 9/6: Per arm near. First cooling, 17K. contamination
- (5) 9/11 11/21

(3) 7/6 - 9/6

- : Per arm near. No coil actuator. contamination
- (7) 11/27 1/17/2010

(6) 9/11 - 11/21

(8) 11/29 - 12/23

(10) 1/22/2010 -

(11) 1/22/2010 -

: Inline near. New coil actuator.

: Inline near. No coil actuator.

- : Per arm near. New coil actuator. contamination
- (9) 12/28 1/17/2010: Per arm near. Trouble for a touching mirror
 - : Inline near. New magnet damping. 17K.
 - : Per arm near. New magnet damping. 16K.

The sensitivity improvement is consistent with thermal noise reduction

KAGRA Sapphire mirrors

- Pathfinder polish of sapphire has been done.
- The realized surface distortions are 0.34nm/140mm, 0.42nm/180mm; these values are better than our requirement 0.5nm/140mm.
- ROC with 0.15% error over 180mm (2002.98m/2000m)

Polished sapphire crystal of 200-mm diameter

Clean room test bench

JGW-G130166

KAGRA Local control for Pre-Isolator

26

KAGRA Network design for controls and DAQ

KAGRA History of cryogenic mirrors in Japan

1997 Stating of feasibility study at KEK. Sapphire mirror & fiber suspension.

2001 *CLIK: Control of cryogenic Fabry-Perot cavity at Kashiwa.*

2002~ CLIO: Sensitivity Improvement by Thermal noise reduction by cooling.

201? KAGRA: Detection of Gravitational wave.

JGW-G130166