Optical Techniques for Reducing Thermal Noise

GWADW La Biodola, Isola d'Elba, Italy

LIGO-GXXXXXX

May 2013 Stefan Ballmer

Coast-Out-line

Types of thermal noise

Correlation length

Strategies for mitigation

Examples

GWADW La Biodola, Isola d'Elba, Italy

May 2013 Stefan Ballmer

The types of Thermal Noise

 $dF(T, \vec{\varepsilon}) =$

E.g. coatings

- Coating Brownian
 - Mechanical coating loss
 - Scales with beam area
 - Limiting 2nd gen. detectors
- Thermo-optic Noise
 - Scales w/ beam area S
 - Key for crystalline coatings

Note : O(1) constants dropped (e.g. Poisson raito)

Coast-Out-line

Types of thermal noise

Correlation length

Strategies for mitigation

Examples

GWADW La Biodola, Isola d'Elba, Italy

May 2013 Stefan Ballmer

- Suspension thermal noise
 - Optic driven by suspension
 - Coherent motion over the whole optic

- Substrate Brownian noise
 - Set by elastic Greens function
 - '1/x' convolved with beam profile
 - Correlation length ~ beam radius w
 - Transverse correlation drop-off ~1/x

Nakagawa et. al.

PRD, vol 65, 082002

Coating Brownian noise

gr-qc/0610041v3 (2007)

- Set by elastic Greens function
 - But driven on surface only short range!
- Correlation length, on surface
 - Transverse correlation ~coating d (<<w)

- Exponential drop-off (beam profile)

- Thermo-optic noise
 - Set by (freq. dependent) diffusion length
 - Correlation length ~ diffusion length
 - O(30u) around 100Hz
 - Transverse correlation ~diff. length (<<w)
 - Exponential drop-off (beam profile)

Caution: Not true for cryogenic reference cavities

small spot & large diffusion length

Coast-Out-line

Types of thermal noise

Correlation length

Strategies for mitigation

Examples

GWADW La Biodola, Isola d'Elba, Italy

May 2013 Stefan Ballmer

Strategies for Optical Thermal Noise Mitigation

Divide et impera: avoid correlation

 Add noise incoherently

- The enemy of your enemy is your friend Cancellation:
 - Coupling to fluctuations through 2 mechanisms with opposite sign

Strategies for Optical Thermal Noise Mitigation

- Divide et impera
 - Transverse:
 - Large spots
 - Special beams: LG, flat-top, etc.
 - Multiple beams
 - Longitudinal: de-correlate dielectric layers
 - Khalili cavities

Strategies for Optical Thermal Noise Mitigation

Cancellation:

Through different coupling mechanisms
 e.g. for thermo-optic noise: α and dn/dT

- Measuring and subtraction
 - Measure thermal noise independently (i.e. with no/different GW sensitivity)
 - Displacement-free interferometry

Coast-Out-line

Types of thermal noise

Correlation length

Strategies for mitigation

Examples

GWADW La Biodola, Isola d'Elba, Italy

May 2013 Stefan Ballmer

Big Gaussian

• Long arms!

LIGO

- ALL (amplitude)
 displacement noises: ~ L⁻¹
- Thermal noise: ~ L^{-1.5}
 (beam spot grows with L)
- For fixed arms
 - Rapidly approaching
 degeneracy for significant
 beam size increases

Laguerre-Gaussian beams

- Effective beam area larger Noise averages
 For LG33: x1.61 (in power noise)
- But modes are degenerate

 Contrast defect unacceptable
 PRD 84, 102001 (2011)
 - Ideas for thermal correction

PRD 87, 082003 (2013)

LG33 beam

Other beam shapes

- Laguerre-Gauss: uses spherical mirrors
- Idea: Choose other mirror profiles
 - e.g. Flat-top beams, conical beams
 - Avoids degeneracy problem
 - Issues
 - Beam profile not conserved under propagation
 - Alignment (beam shape changes)

Multiple beams

TEM00 is good – use more of them!

Multiple spots per mirror

 exploit spatial de-correlation

Realizing multiple beams

Delay line with spherical mirrors

(Herriot, APPLIED OPTICS, **Vol.** 4, No. 8 (1965))

- g-factor determines beam orbit
- Size and ellipticity of orbit unrestricted
- closed as FB cavity by terminating wedges

Optimizing spot locations and size

- Both individual spot size and # of spots per orbit directly dependent on g-factor
 - E.g. aLIGO g=0.83, #spots = 7.40
- # reflections limited to ~<10
 - (no sensitivity at FSR=c/(2*N*L))
- Possible solution:
 - Optimize g-factor for big beam sport
 - Inject beams in an elliptical orbit
 - Use less than one full orbit

Example: 4.5 spot Resonant Delay Line

4.5 spot Resonant Delay Line

4.5 spot Resonant Delay Line

Rest uniform RoC, no wedge (no clipping!)

Easier than traditional delay lines!

- N much smaller than traditional delay lines
- Two mirrors define optical mode
 - No "threading of the beam"
 - Mode-matching identical to regular FB cavity
 - As easy to align as a regular FB cavity
- Scatter
 - Exists, but cavity is locked, no fringe wrapping
- Alignment sensitivity
 - identical to simple 2-mirror FB cavity

Alignment signals / Spot motion

- RDL with 4 ETM and 5 ITM spots, all same 4.5-spot Standing-Wave Resonant Delay Line
 0.4
 - w=57.3mm
 - For 3urad ITM misalignment
 - Spot move 6.4cm ∈
 - (identical to aLIGO)

Khalili cavity

- Split single mirror (dielectric stack) into anti-resonant cavity (Phys Let A V334, 1, 2005, 67-72)
 - TN of the two mirrors uncorrelated
 - Only ~2-doublet stack on M1
 - M2 high reflector
- Requires 2x the mirrors, incl. control system...

The enemy of your enemy is your friend.

Thermo-optic cancellation

Stefan Ballmer

2 enemies

- thermal expansion, α
- dn/dT, tunable
- opposite sign

$$r_{diff} = \sqrt{\frac{\kappa}{2\pi fC}} \approx 40\mu @80$$
Hz

Brownian cancellation?

• Same idea for Brownian noise...

 $- dn/d\sigma$: photo-elastic coupling

PRD 87, 082001 (2013)`

- Small for SiO₂:Ta₂O₅

- Check for crystalline coatings ?

Sensing thermal noise

- TN could be measured by 2nd interferometer – need comparable sensitivity…
- Displacement-free interferometry
 - Displacement couples at discrete times (t-nT)
 - GW strain couples continuously
 - Devise readout that cancels signals at (t-nT), but preserves (some) GW sensitivity
 - Effectively AC-couples the signal...

Long arms!

- Exploit spatial coherence properties

 Either avoid coherence
 - Or cancel signal through additional couplings
- Challenge:
 - Design scheme that passes the KISS test

Kona Coast Hawaii

That's

Conclusion

- Long arms!
- Exploit spatial coherence properties
 - Either avoid coherence
 - Or cancel signal through additional couplings
- Challenge:

Design scheme that passes the KISS test