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GW detection as “differential accelerometry” measurement 
•  Tidal accelerations between 2 or more geodesic reference test masses 
•  Need reference masses in free-fall(*) and measurement of their separation 
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(*) Force free except for known, calibrated control / suspension forces 
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Differential acceleration measurement in experimental gravitation 

•  space GW observation: requirements and design 

•  What we know: main limits, tests on ground and space (LISA Pathfinder) 

•  Extensions of eLISA /LPF GRS heritage to future missions 
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eLISA Strain Noise and Massive Black Hole Science 

•   Acceleration noise dominates GW sensitivity below  5 mHz 

•   Low frequency performance critical to massive black hole science 

Merger of 2 106 M◉ 

BH at z = 1 

1 week pre-merger of 
2 106 M◉ BH at z = 1 

3 fm/s2/Hz1/2 

TM acceleration noise 
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•  synthesized 1 million km Michelson with free-falling TM 

•  interferometer TM – TM measurement in 3 parts:  

TM-SC     SC-SC    SC-TM 

   12 pm/Hz1/2 

 

•  Drag-free TM  SC follows TM along sensitive axes 

  3 fm/s2/Hz1/2 

 

•  nm/Hz1/2 spacecraft control 

•  nN force control on non-IFO axes 

eLISA Measurement Concept  
[ESA L2 mission candidate: http://support.elisascience.org/] 

Test mass 
Inside GRS 
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On a 5 m2  / 300 kg spacecraft  
 
DC acceleration 100 nm/s2 

 
Fluctuations  10-10 m/s2/Hz1/2 

The road to eLISA GRS design (what we can’t do)  
Spacecraft as a geodesic reference (Cassini, Pioneer) 

Locating spacecraft CM also difficult 

 Requires “drag-free” spacecraft  shielding a free-falling reference TM 

Solar radiation pressure 

A reference TM accelerometer to correct satellite motion 
•  Microwave ranging between satellites 

•  Accelerometers corrects for non-inertial spacecraft motion 

•  Accelerometer TM “forced” to follow spacecraft 

  can’t apply 100 nm/s2 with < fm/s2/Hz1/2 noise 
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Drag-free control for precision geodesic reference TM 

TRIAD, 1972 
[from CQG 28, 094015 (2011)]  
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•  Triad, GPB 

• Control satellite to follow a free-falling reference TM 

 Microthrusters with control gain DF
2  

•  No forces on TM, at least on measurement axis 

Free-fall of TM limited by: 
g  – acceleration from noisy stray forces 
p

2 * x  – elastic coupling * SC jitter 

SC jitter x For LISA: need free-falling TM (not satellite) 
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Existing space electrostatic accelerometers 

TM – electrode gaps of order 100 microns 
GPB (30 mm), GRACE/GOCE/m-Scope (200-300 mm) 

 Need big gaps, no strings attached! 

Thin TM discharge wire 
GRACE/GOCE/m-Scope 

7 mm Au wire  thermal noise pN/Hz1/2 at 1 mHz 

With 300 mm gaps 
• Electrostatic:  10 mV/Hz1/2, 10 mV   10 fN/Hz1/2 

 
• Brownian gas noise, 10-8 mB   30 fN/Hz1/2 

Willemenot and Touboul 
Rev Sci Inst 71, 302 (2000) 
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eLISA / LISA Pathfinder gravitational reference sensor (GRS) 

VACT1 

VACT2 

VM 

VAC 

100 kHz L 

L 

GRS design for LISA PF / LISA  

•  46 mm cubic Au / Pt test mass (2 kg) 

•  6 DOF capacitive “gap” sensor w/ AC readout 

•  Audio freq electrostatic force actuation   avoid DC voltages 

•  Large gaps (3 – 4 mm)             limit electrostatic disturbances 

•  High thermal conductivity metal / sapphire 

  limit thermal gradients 

•  High vacuum (p = 2 mPa)  limit Brownian, radiometric effects 

•   UV photoelectric discharge 

•   Caging mechanism for launch lock 

•  Defines TM environment 

•  nm/Hz1/2 measurement on all axes 

• 10 pm/Hz1/2 interferometer used on x axis 

•  nN actuation forces (mN non-science) 
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Sources of acceleration noise 
•  What do we know about about stray forces and what will we learn with LPF? 
•  What should we be able to “guarantee” for eLISA and beyond? 

Surface 

Bulk 

3D sensing + actuation 

Torsion pendulum 
small force 

measurements 
(lightweight TM) 

LISA Pathfinder 
flight test 

LPF Instrument limit 
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Mo / Shapal EM  
(4 mm gaps,  

LPF geometry) 

Mo / Sapphire LPF EM 

Torsion pendulum measurement of surface forces:  
free-fall inside LISA / LPF GRS prototypes 

1-mass torsion 
pendulum 
(torques) 

4TM pendulum 
(force sensitivity) 

Lightweight TM  test surface forces 
 Trento, UW, Firenze / Roma / Napoli, Florida 
Bulk forces (grav + mag) tested separately with LPF  

LPF FM-replica + 
ELM electronics 
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LPF GRS 

Infinite gap 
model 

Factor 13 
in noise 
power 

Noise source: Residual gas impacts 
Excess damping + Brownian noise in constrained volume   

F

x 

||F

PRL, 103 140601 (2009) ,    Phys Lett A, 374 3365 (2010) 
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•  well modeled and measured  
•  OK for LISA with 2 mPa  
•  vent to space  should do much better! 
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Noise source: stray electrostatics inside GRS 
•  Conducting Au-coated shield not truly equipotential (patch effects) 
•  TM charged randomly by cosmic rays (1/f or worse!) 

  [Requires periodic or continuous discharge (UV)] 

Largest interaction: TM charge + average residual E field 
PRL 108:181101 (2012)   -
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•  Measure and compensate average DC field  
 

 from  ≈ 100 mV intrinsic to better  < 1 mV 
 lots of experience in lab, will test on LPF 
 
•  Need stray potential fluctuations < 20-50 mV/Hz1/2  

x :   equiv. single electrode potential 

q  

V 
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Lab measurement of stray surface potential fluctuations 

mHz 1at V/Hz 80 1/22/1
mx

S

•  Single electrode (500 mm2) 
average surface potential 
noise < 12 mV/Hz1/2 

Electrostatic dissipation (thermal noise): 

•“Vacuum gap” capacitor: detect  = 3 10-7   

•Thermal contribution ≈ 1 mV/Hz1/2   

•  Upper limits already acceptable for eLISA  

•  Marginal at 0.1 mHz 

•  Improving lab measurement 
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 Noise budget:     dF/dT  ~  100 pN / K  
  ST

1/2 < 10 mK / Hz1/2   
 
 Radiometric and radiation pressure effects well modeled 

 
 Asymmetric outgassing requires measurement (applied T) 

309 K 

298 K 

Force measurement with EM GRS 

• Verify radiometric model (10%) 

• Outgassing observed (pre-bake) 

p = 0 data increase faster 
than radiation pressure T3  

•  OK for LPF and LISA  

2 mPa 

LISA goal (100 pN / K) 

Noise source: Thermal gradient-induced forces 
[PRD, 76 102003 (2007); CQG, 26 094012 (2009)] 
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Torsion pendulum upper limits on GRS force noise:   
conversion from  torque  force  acceleration 

•  rule out large class of TM surface disturbances at level of 30 fm/s2/Hz1/2   at 1 mHz 
•  within factor 1.5 of LPF goal  
•  bulk forces  LISA Pathfinder  

4TM 

1TM (W) 

1TM (Si) 

LISA req 

LPF req 
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LISA Pathfinder: Einstein’s Geodesic Explorer (2015) 

g1 

g2 

TM1 TM2 

o12 

o1 

Compress single eLISA arm to 40 cm inside 1 spacecraft 
 
Measure differential TM acceleration 
 
Test of eLISA GRS and local IFO measurement 
 
  flight heritage for eLISA 

  commissioning for eLISA in-flight operations:  

  drag-free, TM uncaging and discharge, calibrations and tuning 

  physical model of disturbances for free-falling reference TM 

 

At L1 Lagrange point 
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LISA Pathfinder as differential accelerometer (time domain) 

TM1 TM2 
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IFO 
Acceleration 

•  Produce differential acceleration time series g2 – g1 

•  Spacecraft coupling term (stiffness) subtracted (also for LISA) 

•  Need to measure dynamic parameters: stiffness, actuator calibration, crosstalk 

Drag-free:   thrust SC to follow TM1  (null o1, 1 Hz BW) 

Electrostatic suspension: force TM2 to follow TM1  (null o12, 1 mHz BW)  
Control 

g1 g2 
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LPF instrument limit: noisy compensation of DC gravity imbalance 

2/1

/

2/12   2             VVaACT SgSVF 

Noise in “DC” force applied to compensate difference in local g 
 
 Not present in eLISA!! 
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•  Expect  < 8 fm/s2/Hz1/2 at 1 mHz 
 
•  full analysis complicated by uncorrelated voltage fluctuations, f act   

Current measurements 2-3 worse 

Current calculations look better! 
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LISA Pathfinder: avoiding actuation fluctuations with free-fall mode 

compensate average DC force imbalance by applying a large impulse 
followed by free-fall (parabolic flight!)   

x 

•  Example:  Apply 250 x average needed force for 1s, followed by 249 s free-fall 
 
•  Keep displacement to 10 micron range 
 
•  Throw out data during impulses to measure acceleration noise without applied 
actuation forces, even to lower frequencies (careful analysis) 

Grynagier, CQG 26 (2009)  094007 
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LISA Pathfinder performance prediction in free-fall mode 

LISA Pathfinder should guarantee most of LISA science 
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LPF also measures 

•  Measure spacecraft g (3 translations and 6 rotations)  
Test gravitational balance to better than 10-10 m/s2 

 
•  Force noise from actuation 
 
•  Measure temperature fluctuations down to 10-4 Hz – and below – and dF/dT 
 
• Measure magnetic environment and forces from applied B 
 
•  Measurement and compensation of average stray E field (nulling dF/dq)  
 
•  Measure low frequency charge fluctuations with long term charge test 
 
•  Stiffness / SC coupling / crosstalk measurements 

Create physical model for limits to achieving perfect free-fall 
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What will LPF teach about eLISA performance at 10-6 – 10-5 Hz? 
• eLISA spec for f > 10-4 Hz   testing too costly at lower frequencies 
 
•  Massive black hole merger (107 – 108 MSUN) science rich at 10-5 Hz 
•  Future GR tests, time-delay need drag-free at 10-6 Hz 
 
LPF 
•  1-2 acceleration noise measurements cover 10-5 Hz (free-fall mode) 
•  Dedicated long term measurements of charge (+ T, B-field) 
 
•  mHz – Moon test  extract gravity signal from earth-moon system (2/month) 

requires 8-10 x 1 day acceleration measurements over 1 month 
 

 SNR = 1 requires 0.5 pm/s2/Hz1/2  same as time delay requirement! 

1 

2 LPF at L1 
x 

EARTH – MOON GRAVITY SIGNAL ON LPF 

f 
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Improve eLISA GRS by factor 10 – 0.3 fm/s2/Hz1/2 at 0.1 mHz? 

Starting with same GRS dimensions as eLISA GRS, need: 
•  p < 2 10-8 Pa (near 10-10 mB)                [probably ok … lower outgassing, better bakeout] 
 
•  Stray potentials < 0.5 mV, fluctuations < 5 mV/Hz1/2 on each electrode  
                                           [DC correction ok … adjust DC correction 1/week] 
        [ fluctuations … improve factor 2 electronics, factor 10 stray fields limit] 
 
• Thermal fluctuations   T < 2 mK/Hz1/2      [maybe OK … test on LPF] 
 
•  Satellite coupling   measure  to 200 pm/Hz1/2 with 1 mN/m              [probably OK, test with LPF] 
 
•  Actuation + crosstalk  2 ppm/Hz1/2 stability + gravity < 0.5 nm/s2 trans / 200 prad/s2 rot 
                  [measure g on LPF, test FEE on ground ] 
           [could cure with impulsed actuation, small electrode change] 
 
•  Spacecraft gravity fluctuations  < 10-16 m/s2/Hz1/2  
                     [probably analysis only … won’t test at this level on LPF] 

•  no show stoppers, but not trivial 
•  Testing a challenge (especially for gravitational fluctuations) 
•  Surface problems cured with larger mass, larger gaps 
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“Just make the mass bigger and the gaps larger”  

•  Yes, for many surface disturbances 
 

 electrostatic forces   ~1/d, ~ 1/d2, or 1/d3 

 Brownian noise from gas  ~ 1/d  for d << s 

 Area  A ~s2    mass  M ~ s3 

 
•  Somewhat for magnetics (for very close sources of field gradient) 
 
•  No for gravity (except for closest sources) 
•  No for actuation noise, most crosstalk 
 
•  Larger gaps + larger TM: bigger, heavier,  

harder to actuate, harder to cage 
 
Example: gas damping for DECIGO   (4 10-19 m/s2/Hz1/2 at 0.1 Hz) 
 100 kg TM, assume d ~ s  (no proximity effects) 

s 

d 

3/23/1

2/12/1
2/12/1

M

p

M

A
pSa


  need p < 10-9 Pa 

$$$$ 
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STOC Simulations 

Uncoated TM Optical bench Spacecraft + optical bench tests 

VEGA (2 launches!) 

LPF Launch: July 2015 
https://www.elisascience.org/articles/lisa-pathfinder/lpf-mission 
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Extra stuff 
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Overall upper limits on GRS surface force noise: 
Torsion pendulum noise floor with prototype LPF sensor + electronics 

Tungsten fiber (Q = 3000) 

Fused Silica fiber (Q = 800000) 
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MBH @ z = 3 
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Noise source: Brownian noise from residual gas 

•  2 mPa:  conservative upper limit based on measured gas loads  

•  worst case: can identify excess with radiometric effect 

Single TM gas damping noise 
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Noisy average “DC” bias (Sx) 
mixing with mean charge 

• non-stationary as charge drifts (2 106 -- 107 charge in one day)  
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Interaction between TM charge and stray electrostatic field 

[PRL 108,  
181101 (2012)] 

NB  noise source proportional to (1/gap)  
 
   even cm size gaps will still require measurement + compensation! 
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Force noise from electrostatic dissipation 

n  vV
d

C
F -

C
Tkv B




4n vn 

V 

Thermodynamic voltage noise from surface 
dissipation mix with DC V to give force noise 

•  Squarewave modulation technique, 10-17 Nm transient torque resolution  

•  Detect loss angle  ≈ 3 10-7 for 2 electrode pairs  small enough for LISA! 

•  Waveform and distance dependence consistent with  independent of frequency 

Comparison of measured transient torque 
with theoretical model for  = 3 10-7 



W. J. Weber 
GWADW, May 2013 

B
x

mFx






 .

0

0
m

 BV
mm





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•  Fluctuations in gradient: 
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Force noise source: interaction of magnetic moment and B field 

Onset (“superconductor limit”) 
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vacuum chamber: 
(not including sensor) 
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LISA Pathfinder Magnetic Measurements 
Au/Pt alloy for low susceptibility, low residual moment 

Measured EM TM properties 

Field estimates: 

•  Large field gradient due to thermistors  
mounted on GRS 
 Should be an order of magnitude lower 
with demagnetization   
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200 fm/s2/Hz1/2 

at 1 mHz 

Will LPF have the resolution to see the earth-moon signal? 

x actuation 

Interplanetary B 
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Experimental verification of stray potential compensation 

•  Measurement of dF/dq (add charge to TM and measure change in force) 

•  Measure and compensate typical 100 mV imbalance to < 1 mV 

•  Need to measure by varying charge (not same as changing VTM with applied voltages)  

•  Observed drifts small (order several mV in 1 month)  periodic remeasurement 

V1A 

V2A 

V1B 

V2B 

V +VCOMP 

+VCOMP 

-VCOMP 

-VCOMP 

Uncompensated 

Compensated 
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•  consistent with sensor electronics noise fluctuations  
•  no excess noise from surface potential flucuations 
•  upper limit for 5 cm2 surface: <12 mV/Hz1/2 at 1 mHz 

Experimental upper limits on stray potential fluctuations 
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LISA Pathfinder as differential accelerometer 

Coupling to satellite “jitter” 
(can be tuned to zero) 

IFO readout noise 

Baseline stability 
(Zerodur) 

LPF Instrument Noise 
(include x force actuation noise) 

Differential 
force noise 
(for LISA) 
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LISA Pathfinder as differential accelerometer for LISA TM  
acceleration noise: Instrument performance 

LPF Spec 

LISA Spec 
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Verification of LPF Optical Metrology 

•  Necessary displacement sensing achieved across whole LPF band 
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LPF Hardware for LISA: optical metrology 
•  (x12) Differential TM displacement at 6 pm/Hz1/2 level (3-30 mHz) 

x12 

•  Audio-frequency heterodyne Mach-Zehnder interferometer with 
waveform digitizing phasemeter  
•  High stability Zerodur optical bench, monolithic construction 

Phase 

•  Auxiliary IFO for phase and frequency noise correction 

x1 

•  (x1) TM1 to spacecraft displacement – LISA local TM measurement 
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The micro-Newton 
thrusters 

• Cold gas developed 
for Gaia better than 
requirements 

• Now selected as 
baseline in place of 
FEEPs 

Monterey, April 10, 

2013 

S. Vitale 43 
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New LPF vacuum strategy: vent to space 

•  Replace getter pumps – low pumping speed – 
with high conductance (15 l/s) duct to space 

•  Requirement 2 mPa 

•  Gas load measurements indicate significantly 
lower 
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Actuation fluctuations: experimental limits with FM FEE 

FM FEE 

TM1 

TM2 

Lock-In 
(A-B) 

Coherent differential 
amplitude detection 

7 V amplitude 

20 mV 

2x violation 
at 1 mHz 

2 ppm/Hz1/2 

•  Actuation fluctuations from 3-15 ppm/Hz1/2 (x channels 3-7 ppm /Hz1/2) at 1 mHz 

•  Typical power increase with 1/f at lower frequencies 

    Gives roughly 7 fm/s2/Hz1/2 at 1 mHz with 0.65 nm/s2 grav imbalance 
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Difference between Q-modulation and VZ modulation techniques 

Q 
(VTM) 

+   
+   
+   
+   
+   
+ 

+   
+   
+   
+   
+   
+ 

+   +   +   +   +   + 

+   +   +   +   +   + 

x
x

TOT

x

x

C

CQ

F





-



 1

 

 




 VV

x

C

x

C

C

C

V

F

TMSz

x
x

TOT

z

z

x -








-






)(,

,4

• In addition to modulation TM potential, 
introduce large field gradient at borders of z 
electrodes 

o amplifies shear force that is not relevant 
for TM charge 

VTM 

+   
+   
+   
+   
+   
+ 

+   
+   
+   
+   
+   
+ 

VZ 
+ + + + + + + + +   

+ + + + + + + + +   

- - - - - - - - - - - -  

- - - - - - - - - - - -  

VZ 

x 

x 
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Electrostatic forces and possibility of compensating with applied voltages 

 2

,

,

2

1





VV

x

C
Fx -




 



Forces 
proportional to:   

TM 

S 

… 

… 

… 

…
 

…
 

VTMj 

V 

VTM0 

Vi 

TOT

i

ii

TOT

TM
C

VC

C

Q
V




 2

  VV -

2Q charge stiffness 

 2

TMi VV -

Electrode 
voltage 
fluctuation 
(FEE) 

Individual 
domain potential 
differences 

xQ
Interaction 
charge and 
average field 

Ideally: 
•  Want dF/dQ, dF/dVi, dF/dV = 0  
•  Would require all conductors at same potential 

We can: 
•  apply DC voltages at will (up to 5 V) 
•  change TM charge (using UV) 
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2.1 Measurement with ringdown tech (2010~2012) 

Tech1: measure pendulum amplitude decay 
as a function of electrode voltages 

 
 ESESFF

ESFvexp

111



-




I

Viscous 
damping 

fiber  
damping 

Electrostatic 
 damping 

Fit 

condition 

δES  

(10-7) 

δF 

 (10-7 ) 

1/v  

(10-8 /s) 
2 Remark 

3 free 

parameters 

7.6 

(7.5) 
-4 

(12) 
1.1 

(1.6) 
1.2  

(20 DOF) 
Physical 

Assuming 

1/v only 

from gas 

4.5 

(1.3) 
8.7 

(.4) 
0.43 

1.2 
(21 DOF) 

Physical 

Assuming 

 δES =0 
-- 

16 

(.03) 
-.5 

(.3) 
1.2 

(21 DOF) 
Not 

physical 

48 

Result: upper limit of δES 1.5*10−6. 

Object: A LPF flight model, Au-coated 
electrodes, 4 mm capacitive gap along x 

C4 

C3 

C2 

C1 

Bias DC voltages 

Decay time extraction 

V1 

V2 

V3 

V4 
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2

COMV
C

NDC





 
oddj

M
M

MOD t
j

V
V

,

sin
4




* L. Carbone et al, 6th Amaldi, Japan, 2005 

Tech2: Perfect Square Wave modulation, which gives constant torque proportional to V2. 
However delays due to lossy elements cause force transients proportional to delta at 
every square wave transition * 

49 

2.2 Measurement with modulation tech (2011~2012) 

C4 

C3 

C2 

C1 

Square mod and Com voltages 

Circuit and surface losses ( & ES) 

-Vcom 

Vcom 

Ideal SW to one diagonal pair 
 
 
Compensation voltages to the 
other pair 
 
 

• +/- Vcom and out of phase square wave applied to diagonal pairs, to avoid the 
change of TM potential 

• enable to measure circuit loss and surface loss  & ES together 

• Huge DC torque (~10-10 N m) cancelled, small transient torque left (~10-17 N m ↔ 
δES~10-7) for losses extraction 

Huge DC torque cancelled  
Small transient torque left 



W. J. Weber 
GWADW, May 2013 

9
th

 L
IS

A
 S

ym
p

o
si

u
m

, J
u

n
. 2

1
~2

5
, 2

0
1

2
, P

ar
is

 

Measurement of Electrostatic Dissipation on GRS Istituto  Nazionale 
Di Fisica Nucleare 

/18 50 

2.3 Illustration of measured signal 
Electrode voltage:  

No losses 

Ohmic delay 

Frequency 
independent  

Resulting torque (∝V2):  

•  2f signal (+ other even harmonics) 
•  Nearly “Dirac -function” for ohmic delay (all cosine) 
•  Longer lived signal for frequency independent ES (both sine and cosine) 
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