Gravitational Wave Astrophysics The Next Frontier in Understanding the Universe

LISA-2020 an Intermediate-Scale Space Gravitational Wave Observatory for This Decade

Gravitational Waves
Advanced Detectors Workshop
GWADW 20th -24th May 2013

Sasha Buchman
Stanford University
for the Space Sciences team

LISA-2020 (LAGRANGE based) Collaboration

TELAND JUNIOR LINE STATE OF THE	NASA	LOCKHEED MARTIN	مدينة الملك عبد العزيز للعلوم و التقنية KACST	
Stanford	NASA Ames	Lockheed	KACST of	SRI
	Res. Center	Martin	Saudi Arabia	International
- Science	 Science orbit, 	■ Telescope,	 Science payload, 	- μN thrusters
 Payload lead 	Orb. injection,	■ Spacecraft	■ Tech. development	
GRS / IMS	Prop. mod.			

SSACHUSEI III	Haring Aller
MIT	University
	of Florida
- μN thrusters	• ATC
	■ DF control

Outline

Why Gravitational Wave (GW) Astronomy?

What Is the Status of GW Astronomy?

How Do We Go From Here to LISA 2020 ?

When Can We Fly 'THE NEXT' GWD in Space?

Today's 'DARK' Universe

What do we really know?

- ➤ Universe known by EM; only ~0.5% of matter
- ➤ Continuous 'model improvements' last 100 years

 BH Universes and paradoxes, CPT & LI violations, Unification?
- > GW 'see and interact' with 100% of matter
- > SM & GR used for converting EM data to Universe picture have 'issues'

Seen in EM "understood" in GR

Why GW Astronomy

- Gravitational Wave (GW) Astronomy Will Give the Answers About the Universe That EM Cannot Provide Not really supported by the space community
- ➤ The 10⁻⁴ Hz to 1 Hz is the 'Richest' GW Range
 This Range Requires a Space GW Observatory
- > A Laser Interferometer Space Antenna (LISA) Is Necessary and Possible by 2020:
 - > Will Achieve the Most Important GW Science
 - > At "Affordable Cost" (\$500M)
- > Support of Science Community Critical for LISA Series

The Gravitational-Wave Sky

Conclusion #1

Physics & Astrophysics are in a 'DARK' period; GW Astronomy is the most plausible SOLUTION

2

Status and prospects for GW Astronomy

Resolution and Sources of GW

> Earth 10 Hz to 1000 Hz, ~2016

Local (100 MPc range) Medium Resolution

> Astronomical Observations <10⁻⁷ Hz, ~ **2017**

TBD Sources & Resolution

> Space Experiments 10⁻⁴ Hz - 1 Hz, > **2030**

Large # of Sources & Excellent Resolution

GW Space Observatories Issues

With many caveats which are about 50% probable:

- > eLISA launch NOT BEFORE 2028 (means maybe after 2035)
- ➤ NASA LISA launch NOT BEFORE 2030 (means maybe after 2035)

 (Approval to Mission; 10 -20 years; Hubble, GP-B, LPF, WST ...)

Implications:

- > Delay in 'best' information required to understand the Universe
- Difficulty motivating students and scientists to join the field
- > Old technology and lack of program continuity
- > Loss of opportunity to perform in conjunction with LIGO/VIRGO/etc

Few in this audience will have any chance to see LISA type science

LISA 2020: GW Observatory for This Decade

Cost Reduce ~ 70%

Complexity Reduce ~ 50%

Comm. Link Increase >100

- ➢ Geocentric Orbit: ~ 50% Heliocentric cost
- > Reduced Requirements ~ ×30
- > Small sat approach to tech demonstrations
 - > 2013-2017 technology (LISA technology is older than 2000)
 - > Parallel, low cost, low risk, on small and cube satellites
 - > ~6 technologies at 1 M\$ 4 M\$ each
 - > Multiple institutions and international partners
- > Simplified Robust Inertial Sensor (LPF back-up)
 - Spherical, fully drag-free, optical sensing
- Metrology
 - > Reflective Optics with Gratings

LISA-2020 Schematics

Based on LAGRANGE with 1/30 performance

Overview of LISA-2020 Orbits

Geocentric Orbits in Lunar Plane; Arm ~ 1 Gm

Data Rate Estimate for Space Antennas

	GP-B	1 LISA or LISA-2020 SC	3 LISA SC vs GPB
Plan	0.35 GB/day (actual data rate)	0.011 GB/day (NASA) 0.004 GB/day (ESA)	0.033 GB/day (NASA) 0.013 GB/day (ESA)
System			
SC	SC (GPB 6 deg ctrl)	SC (LISA-2020 7 deg ctr) (LISA 7)	≈ (GPB)×3
Temperature	Cryogenics	μK control	≈ (GPB)×3
Propulsion	He thrusters	μN thrusters	≈ (GPB)×3
Pointing	1 telescope	2 telescopes	≈ (GPB)×3 ×2
Test Masses	4 TM × 3 deg ctrl.	2 TM × 6 deg control (coupled)	≈ (GPB)×3 ×2
Read-out	4 SQUID systems	4 pm interferometers	≈ (GPB)×3
BW	Meas BW 12.9 mHz	Meas. BW 0.1-100 mHz	≥ (GPB)×3
Formation	None	N/A	3 SC ???

GPB data rate ≤ 1 LISA/LISA-2020 SC data rate

LISA/LISA-2020 data rate ≥ 3 × GP-B data rate ≥ 1 GB/day

Estimated LISA/LISA-2020 data rate / Planned LISA data rate (ESA)* ≥ 77

*7 kbit/s for 8 hours every 2 days = 0.013 MB/day | ESA web site

Comm Link
Increase > 100

LISA & LISA 2020

- ➤ LISA: 10⁻⁴ 1 Hz GW in Space

 Laser Interferometer Space Antenna

 "Standard" since 1995
 - > Based on 20 yrs of studies by LISA team
 - Heliocentric Orbit with Three 5 Gm Arms
 - $\geq \delta h/h \approx 10^{-20}$
 - > Cost > 2 G€
 - > Launch AFTER 2030

- **► LISA 2020:** 10⁻⁴ 1 Hz **GW in Space**
 - Based on 10 yrs of studies by SU team
 - Geocentric Orbit with Three ~1 Gm Arms
 - $\geq \delta h/h \approx 3 \times 10^{-19}$
 - Cost ≈ 1/2 G\$
 - Launch Around 2020

LISA & LISA-2020

	Orbit (Gm)	TM (ms ⁻² Hz ^{-1/2})	Metrology (pm Hz ^{-1/2})
LISA 2020	0.7-1.0	10 ⁻¹³	240
	Geocentric	Sphere × 1	Reflective
LAGRANGE	0.7-1.0 Geocentric	3×10 ⁻¹⁵ Sphere × 1	8 Reflective
LISA	5.0	3×10 ⁻¹⁵	20
	Heliocentric	Cube × 2	Transmissive

Metric	LISA	LISA-2020
Total MBHB	110-220	20-40
MBHB z > 10	3-60	1-4
EMRIs	800	≤ 10
Total WDB	4 104	≤ 3×10³
WDB with 3D	8×10 ³	≤ 10 ²
Stochasic Background	1.0	≤ 0.2

Principal Cost Savings Relative to LISA

1. Orbit change: Geocentric (0.7 Gm – 1.0 Gm arm length)

- Requires 1 small propulsion module instead of 3
- Launch mass savings: ~ 3,000 kg
- Reduced operations & communications complexity
- Other orbits possible Earth-Sun L1?

2. Reduced S/C mass from simplified payload components

- 1 GRS, 1 Laser, 1 optics bench, smaller (20 cm) telescopes
 - > 2 Lasers budgeted for redundancy (4 in LISA)
 - No credible TM failure mechanism
 - > TM sensing, charge control, spin-up, and drag-free have redundancy
- Launch mass savings: ~ 150 kg × 3 spacecraft
- Any 'available ' compact TM technology OK.

3. LISA-2020 wet launch mass: ~2,000 kg (~5,000 kg for LISA)

- Historic trends show cost scales with mass
- Complex payloads are hard to cost

Spacecraft & Mission Design by LM Off the shelve but too large

S/C based on existing LM S/C, TRL >6

> ~3 m \times 0.7 m, 300 kg, 500 W

Fixed 10 W antenna between telescopes

➤ Thermal design: GRS 10 µK at 1 mHz

- > ±50 K at exterior at 27.3 period
- > Thermal load radiated top/bottom
- Payload at center
- Launch mass: 2,070 kg
- > 4-7 month cruise
- 5 year lifetime

Concept of 3 SC & 1 Propulsion module In Launch Fairing

LISA-2020 GWD Concept Study

LISA-2020 concept with heritage

Honeywell, DISCOS, LPF, ST-7, GP-B, STAR

- > 3 drag-free spacecraft in geocentric orbit
- ➤ Minimized payload: 1 test-mass (sphere), 1 laser, 2 telescopes
- > Small sat approach to tech demonstrations

2t launch 3 00 kg 3 00 W

LISA-2020 maintains LISA science ~ 50%

- > 50% Complexity
- > 30% Cost
- > 10,000% Communications Band

For and Against LISA 2020

- Advantages
 - ➤ GW Science ~2020
 - > Technology
 - > GW Community
- Obstacles
 - > Funding
 - Competition
 - > EM Astronomy has Data
 - > Planetary Science
 - ➤ Inadequate EPO

Conclusion #2

Physics & Astrophysics are in a 'DARK' period; GW Astronomy is a very plausible SOLUTION

2 A LISA-2020 Type Geocentric Medium GW Antenna Can Provide Excellent GW Data ~2020

3 Technology Development on Small Satellites

Science & Technology Implementation on Small Satellites

Technology

- Gravitational Reference Sensors
- > Ultra-stable optics
 - > Precision navigation
 - Formation flying

Education

- Grad, Undergrad
- > 3-5 year projects
- > Student led tasks

- Science & Technology on Small Satellites
- > Education driven
- Internationalcollaborations

Science

- Special/General Relativity
- Gravitational waves
- Earth Geodesy/Aeronomy

Stanford Spherical 6 DOF TM Performance

1. Control Spacecraft to follow TM

2. Reduce External Disturbances

- Aerodynamic Drag
- Magnetic Torques
- > Radiation Pressure
- Gravitational Torques

GP-B Flight Gyroscope 2004

TRIAD Sensor 1972

Applications of Drag-free Technology

	Category	Application	Drag-free Performance (m/sec ² Hz ^{1/2}), frequency (Hz)	Metrology (m)
Capability of Cubesat with 2.5 cm TM		Autonomous, fuel efficient orbit maintenance	$\leq 10^{-10}$, near zero frequency a,b	≤ 10 absolute
	Navigation	Precision real-time on- board navigation	$\leq 10^{-10}$, near zero frequency ^a	≤ 10 absolute ^a
		Formation flying	$\leq 10^{-10}$, near zero frequency ^a	≤ 10 ⁻⁹ differential ^a
	Earth &	Aeronomy	$\leq 10^{-10}$, 10^{-2} to 1 Hz ^a	1 absolute ^a
	Planetary	Geodesy, GRACE	10^{-10} , 10^{-2} to 1 Hz a , b , c	10 ⁻⁶ differential ^a
	Science	Future Earth geodesy	$\leq 10^{-12}$, 10^{-2} to 1 Hz ^a	≤ 10 ⁻⁹ differential ^a
	Fundamental Physics	Equivalence Principal tests	$\leq 10^{-10}$, 10^{-2} to 1 Hz ^a	≤ 10 ⁻¹⁰ differential ^a
		Tests of general relativity	$\leq 10^{-10}$, near zero frequency ^a	≤ 1 absolute ^a
7 cm TN	Astrophysics	Gravitational waves	3×10 ⁻¹⁵ , 10 ⁻⁴ to 1 Hz	≤ 10 ⁻¹¹ differential

Notes: ^a Performance to be demonstrated by the drag-free CubeSat; ^b demonstrated; ^c non-drag-free Courtesy John Conklin

Advantages of a Spherical TM

1. No TM forcing or torquing

 Neither electrostatic support nor capacitive sensing required, reducing disturbances & complexity

2. Large gap (35 mm)

> Disturbances reduced and/or spacecraft requirements relaxed

3. Long flight heritage

 \rightarrow Honeywell gyros, Triad I (5×10⁻¹¹ m/sec²), GP-B (4×10⁻¹¹ m/sec² Hz^{1/2})

4. Scalability

> Performance can be scaled up or down by adjusting TM and gap size

5. Simplicity

No cross coupling of degrees of freedom

6. Simple flight-proven caging mechanism (DISCOS)

NEGATIVE: The Mirror Moves

Micronewton Thrusters Design

- ➤ Drag-free & attitude via µN thrusters
- ➤ No existing thruster meets LISA noise, max thrust, and lifetime requirements
 - > LPF evaluating alternates to FEEPs
- ➤ MIT & SRI micro-fabricated ion thrusters as attractive alternative to Busek CMNT or Italian/Austrian FEEPs

- > Micro-fabricated emission sites produce ions & electrons
- > "Digital propulsion": 100's 1,000's of independent emitters / cm²
 - > Single unit can produce forces + torques
- ➤ Huge dynamic range: ion production physics unchanged over 10⁻⁹ to 1 N
- Up to 10,000 sec Isp
- > Prototype: 1 nN to 5 μN thruster ion source tested to 40 hr of operation
- Can be demonstrated on a 1U CubeSat
- > MIT uses capillarity; no moving parts

Thrusters are a problem

Small Sats Technology Program

df/f ~ 10⁻¹²
1mm optical cavity
1 mm gas cell
25 cm³, 25 g, <100 mW

Mini clock Sat – 2016 (Lab development)

Caging System - April 2013 Parabolic Flight

MGRS, 2.5 cm TM, for Parabolic Flight Caging Test

Caging System Schematics

Housing

MGRS, Mechanical

3 U Caging Fixture

Caging System - April 2013 Parabolic Flight

Flight Team (from left) April 22nd – 25th

- >Andreas Zoellner
- **≻Kirk Ingold**
- **≻Eric Hultgren**

Flight4-22a.m4v

UV LED Small Satellite

Technology Objectives

- Raise TRL levels $(4/5 \rightarrow 8/9)$ for
 - Deep UV LEDs
 - ac charge control
- Beneficiaries:
 - LISA
 - GRACE follow-on
 - Drag-free CubeSat

Mission Design

Spacecraft: Saudi Sat

55 kg 50 W Saudi Sat 3

- Russian launch Nov 2013
- 2 month mission
- Fully funded (\$1.5M)

Payload

- Isolated "test mass"
- 16 UV LEDs & photodiodes
- Charge amp
- Voltage bias plates
- ac charge control electronics

222×277×180 mm; 6.5 kg

Management

- NASA Ames: Flight payload, PM, SE, SMA
- Stanford: Payload design, SOC
- KACST: Spacecraft, Launch, MOC

Demonstrates unconventional international collaboration

UV LED Instrument Integration and Test

UV LED Instrument Components; 2013 Launch

■ Payload completion: May 2013

■ PL-SC Com Interface: May 2013

■ Spacecraft CDR: May 2013

■ Payload Integration: Jun 2013

■ Russian launch: Nov 2013

Differential Optical Shadow Sensor (DOSS)

Technology Objectives

- Raise TRL level for miniature highsensitivity displacement sensor
 - ■nm/Hz^{1/2} sensitivity
 - No forcing
 - Non-contact

Mission Design

- 3U CubeSat
- Any orbit
- Launch ~ 2014
- 1 month ops
- Payload funded

Payload

- Light source:
 - SLED, 1545 nm
- InGaAs quad-photodiode
- Ultra-low current Difet amp

Management

- Stanford & KACST: Payload, CubeSat structure
- I&T & Launch: pending

DOSS & ADCS on 3U Cubesat; 2014 Launch

Secondary Payload

ADCS Evaluation

Electrical Power System

Volume Margin

Differential Optical Shadow Sensor

Motor Drive

Payload Processor

Motherboard, CPU, Radio, Antenna

Main Payload

Bus

The Drag-free CubeSat

Science

- Aeronomy, space weather
- Demo < 10⁻¹⁰ m/sec² for future
 - Planetary Geodesy
 - Earth observation
 - Gravity science
 - Gravity-waves

Mission Design

- 3U CubeSat
- Secondary launch via P-POD
- Launch ready ~ 2015
- 1-2 month drag-free ops in low g environment < 10⁻⁸ m/s²

Payload (back-up version)

Drag-free sensor + micro-thrusters

Management

- NASA ARC: PM, SE, SMA, MO
- Stanford: Payload design, drag-free control, data analysis

The Drag-free CubeSat

4 kg 6 W 3U Cube

Caging System

Rate Gyro and GPS

Thruster

Motherboard, CPU and Radio

Shadow Sensor UV LED

Payload with Test Mass **Electrical Power System**

ADACS

GWD in Space

> LISA 2020: ~2020

>LISA: ~2030

> aLISA: ~2045

Conclusions

Physics & Astrophysics are in a 'DARK' period; GW Astronomy is a very plausible SOLUTION

A LISA-2020 Type Geocentric Medium GW Antenna Can Provide Excellent GW Data ~2020

Technology Development on Small Sats Provides the Road to LISA-2020 & Significant Science

Thank you for your attention

