

Characterization and direct thermal noise measurement of coatings

R. Flaminio, D. Forest, M. Granata, B. Lagrange, C. Michel,

L. Pinard, B. Sassolas, G. Cagnoli, J. Degallaix, V. Dolique

Laboratoire des Materiaux Avances (LMA) CNRS/IN2P3

- I. Introduction & facilities at LMA
- II. Coating Q measurements with cantilevers
- III. Coating Q measurements with GENS
- IV. Direct coating thermal noise measurement
- V. Conclusions and perspectives

I. Introduction and facilities at LMA

- Mirror thermal noise the main limitation in Advanced GW detectors
- A few microns of coating the main source of mechanical losses in a 40 kg mirror !

IBS chambers LMA

Coating Q measurement bench

- Q measurement bench
 - Collaboration with INFN Perugia
- Principle
 - Measure damping of thin cantilever modes
 - First mode at ~60 Hz
 - » Allows covering the interesting frequency range
 - Compare uncoated cantilevers with coated
 deduce coating losses

Coating Q measurement bench

• A few tricks

- Clamp mechanics and polishing
 - » Minimize clamping losses
- Cantilever cleaning
 - » Remove polishing impurities
- Cantilever annealing
 - » Cure cracks due to polishing
- Initial sensitivity
 - @ 60 Hz: Q=250000, $\Phi = 4.10^{-6}$
 - Determined by residual clamping losses
- Improvements
 - Cantilevers welded to silica block
 - Improved cleaning (chemical)
- Present sensitivity
 - @ 50 Hz: Q>500000, $\Phi = 2.10^{-6}$
 - Q can be larger than 1 million

II. Coatings Q measurement with cantilevers

((O)) Q measurement on monolayers

• Q of Ti:Ta₂O₅ measured regularly at LMA since 2006

- ◆ No variation seen with thickness (in the range of few 100's nm)
- ♦ No variation seen along the years
- ♦ Average value of losses 2.4 +/- 0.4 10⁻⁴

• Q of SiO₂ monolayers

- Difficult to measure with clamped cantilevers
- Measured properly with welded cantilevers
- ◆ Average value of losses: 4.6 +/- 0.1 · 10⁻⁵

((O)) Losses of multilayer coatings

 Losses of multilayer = linear combination of losses of monolayers

$$\blacklozenge \langle x_{th}^2(\omega) \rangle = \frac{4k_BT}{\omega} \frac{(1-\sigma^2)}{\sqrt{\pi}E_0 w} \phi_{eff,coating}(\omega)$$

- $\blacklozenge \phi_{eff,coating}(\omega) = \frac{t}{\sqrt{\pi}w} \left(\frac{E_0}{E_{\perp}} \phi_{\perp} + \frac{E_{\parallel}}{E_0} \phi_{\parallel} \right)$
- t coating thickness
- w laser beam radius
- σ Poisson ratio
- E_0 substrate Young modulus
- E_{\parallel}, E_{\perp} coating Young modulus, linear combination of layers material Young modulus
- $\phi_{\parallel}, \phi_{\perp}$ coating loss angles, linear combination of layers material losses

$$E_{\perp} = \frac{t_1 + t_2}{t_1 / E_1 + t_2 / E_2}$$
$$E_{||} = \frac{E_1 t_1 + E_2 t_2}{t_1 + t_2}$$
$$\phi_{\perp} = \frac{E_{\perp}}{t_1 + t_2} \left(\frac{t_1}{E_1} \phi_1 + \frac{t_2}{E_2} \phi_2 \right)$$
$$\phi_{||} = \frac{E_1 t_1 \phi_1 + E_2 t_2 \phi_2}{E_{||} (t_1 + t_2)}$$

Multilayer coatings on cantilevers Aa

- No multilayers coating done on cantilevers until 2009
 - ◆ Defects in the coatings due to defects on the cantilever surface
 - Problem solved with new cleaning technique
- First "good" multilayer coating deposited on cantilevers at LMA was the TNI optimized coating
- Losses found to be larger than expected
 - ◆ Expected Losses: 1.5 10⁻⁴
 - ♦ Measured losses: 2.55 10⁻⁴
- Same trend found from TNI measurement
 - ◆ Measured losses: 2.2 10⁻⁴ (Villar A. et al., LIGO-G1101096)
- Several multilayer coatings deposited on cantilevers since 2009
 - Some excess of losses observed (J. Franc et al. GWADW2010, E. Saracco et al. GWADW2012, M. Granata et al. GWADW2013)

((O)) Losses of multilayer coatings

 Measured losses on multi-layers coatings deposited on cantilevers

CONTRACTOR LOSSES OF MULTIPATER COATINGS

- Effect of interfaces?
 - Model developed assuming interfaces layers with bad mechanical losses
 - Results DO NOT explain excess of losses (M. Granata et al, GWADW 2012)
- Ti:Ta₂O₅/SiO₂ multilayer coatings made at LMA in the large coating chamber back in 2005
 - ♦ G.M. Harry et al, Class. Quantum Grav. 24 (2007) 405–415
 - Excess of losses did not observed at that time
 - Substrates were 3" silica discs (2.5 cm and 2.5 mm thick)
- Is there some spurious effect due to the apparatus and/or the type of substrate?

III. Coatings Q measurement with GENS

GENS – GEntle Nodal Suspension

GENS – GEppo Nodal Suspension

GENS – Gentle Nodal Suspension

 Originally developed in Florence for Q measurements on thin disks and wafers

Cesarini E. et al., A "gentle" nodal suspension for measurements of the acoustic attenuation in materials, Review of Scientific Instruments, 80 5 053904 (2009)

• Pro:

- Easy procurement of samples
- Higher mode density than 1D cantilevers
- ♦ High repeatability of Q and frequency measurement
- Suspension point can be displaced easily

Cons

- Drum modes cannot be excited
- Excess loss for modes that roll over the sphere

Mounted in a cryostat to make tests at low T See M. Granata talk on Friday

FIG. 1. Geometrical parameters useful to calculate the equilibrium condition. Only when D > t, at each small oscillation around the (horizontal) equilibrium position corresponds an increase in the vertical coordinate of the c.m.

GENS – Performances

- Reproducibility:
 - ♦ Same sample measured several times
 - All modes

GENS – Performances

• Reproducibility:

- ♦ Same sample measured several times
- Only "good" modes

GENS – Performances

• Reproducibility:

◆ Same sample measured several times

Mode numbering example: 1,2 correspond to the following mode

Mode		25-Feb	26-Feb	02-May	03-May
0,2	f [Hz]	752.03	752.03	752.02	752.03
	Q	36000	36200	35927	35893
0,4b	f [Hz]	2755.4	2755.5		2755.35
	Q	44700	42200	44923	44713
1,2	f [Hz]	4072.8	4072.8	4072.73	4072.7
	Q	26300	26450	27180	26360
0,5	f [Hz]	4196.2	4196.42	4196.23	4196.35
	Q	49750	57000	52135	56467
0,6a	f [Hz]	5915.9	5915.9	5915.84	5915.71
	Q	70550	67850	70060	72447
0,6b	f [Hz]	5919.8	5919.83	5919.65	5919.62
	Q	70750	71050	70680	74090
0,7	f [Hz]				7912.41
	Q				84619
1,4b	f [Hz]				8787.42
	Q				62730
2,2	f [Hz]			9810.74	9811.01
	Q			57805	58027
0,8a	f [Hz]			10183.88	10183.90
	Q			98625	103270
0,8b	f [Hz]			10335.33	10342.56
	Q			67840	67383

• Reproducibility: different disks

(O) GENS - Results on Ta₂O₅

- Measurement of losses of plain Ta₂O₅
 - 2 μ m thick monolayer of Ta₂O₅ deposited on a silicon wafer
 - Coating loss deduced from theoretical dilution factor

GENS - Results on Ta₂O₅

• Can we measure the dilution factor?

((O))

IV. Direct coating thermal noise measurements

In collaboration with: F. Aguilar, T. Li, M. Geitner and L. Bellon Ecole Normale Superieure de Lyon, CNRS

MODirect thermal noise measurement A

- Use AFM cantilevers as substrate
 - ♦ Made of silicon
 - ◆ 500 microns long, 3 microns thick, 15-30 microns wide
- Deposit coating on cantilevers

G. ... D ... 2010, 10014 4 2104, 1149 2010

Direct thermal noise measurement

- Measure thermal vibration with a quadrature phase differential interferometer

MODirect thermal noise measurement A

• First test with monolayers of Ta2O5 and SiO2

TABLE I. COATING PARAMETERS FOR THE TWO MEASURED SAMPLES.

	Coating	Thickness	Thickness	ρ	E
	material	on a [nm]	on b [nm]	$[g/cm^3]$	[GPa]
Coating T	Ta_2O_5	373	476	7.2 ± 0.1	140
Coating S	SiO ₂	424	541	2.4 ± 0.1	70

• Results with Ta2O5

- Results with SiO2
 - Measured before and after annealing

GWADW 2013, Isola d'Elba, May 2013

• Coating losses of monolayers

		TABLE III. L	S	Agrees with GENS		
	Coating	Cantilever $\phi \cdot 10^4$	$\phi_{sub}\cdot 10^4$	D	$\phi_{coa} \cdot 10^4$	measurements
Π	Tantala	2.30 ± 0.25	< 0.3	0.56 ± 0.01	3.9 ± 0.4	
	Silica	2.60 ± 0.50	< 0.3	0.42 ± 0.01	5.8 ± 1.0	- Not annealed
	Silica			4 :	± 2 · 10⁻⁵ (TBC) ←	- Annealed

- Coating Q measured at LMA for several years using thin silica and silicon cantilevers
 - Both on monolayers and multilayers coatings
 - Some excess of losses observed in multilayers compared to monolayers
- Attempt to have independent measurements with different apparatus and substrates
- GENS: GEntle Nodal Suspensions
 - Very nice reproducibility
 - First direct measurement of dilution factor
 - Measurement started with monolayers
- Direct coating thermal noise measurement
 - AFM cantilevers as substrates
 - Compact (and simple) interferometric sensor
 - First measurements on monolayers agrees with GENS first results