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Outline

Surpassing the free-mass Standard Quantum Limit
 Single optical springs
 Multiple optical springs

Coupled-cavity test system for Multiple Optical Springs
 Experimental design
 Simulations
 New optic suspensions at the Glasgow 10m Prototype

On-going Work
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Optical Springs

Suspended optical cavity, detuned from 
resonance

Can create linear dependence of intra-cavity 
power, and hence radiation pressure force, on 
mirror position – i.e. a spring:
– Radiation pressure force 
Mirror movement
Change in stored power
Change in radiation pressure force…

Opto-mechanical coupling of cavity optics

Various applications in GW field:
– Transducer for GW signals to mirror movement in the 

local frame
– Narrowband sensitivity improvements in the 

detection band
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Optical Springs

Narrowband sensitivity improvements in the detection band

– Transformation of test-mass into a more responsive object.

» Free-mass force susceptibility:

» Harmonic oscillator:

– Resonant enhancement of signal before read-out

– Essentially noise-free amplification within the resonant bandwidth – the optical 
spring adds no “classical” noise
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Optical Springs

Optical Springs at the Glasgow 10m prototype

2011
Optical spring in high-finesse cavity. [1]
Spring read out from in-loop transfer functions.

Maximum spring observed at 496Hz, corresponding 
to spring constant of 9.4e5 N/m.

2012 – present
“Local Readout” experiment:
Optics rigidly coupled beneath spring 
resonant frequency.

Local readout allows monitoring of 
light mirror position without disturbing 
quantum state of system. [2]

Can be applied to e.g. “Optical Bar” 
system – GW signal extracted from 
local readout of light coupled mirror 
below spring resonance[1] M. Edgar, Ph.D. thesis, University of Glasgow (2011)

[2] J. Macarthur, Second Year Research Report, University of Glasgow (2012)
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Optical Springs

But, not ideal:

– A single optical spring is inherently unstable

– The enhancement available to a single optical spring is narrow

Using multiple detuned optical fields, we can address some of these issues:
– A stable configuration may be achieved by the inclusion of a second carrier, with 

each detuned appropriately such that the combined effect is stable
– Multiple springs can be used to beneficially re-shape the noise spectral density of 

a detector for wider-band enhancement

– Has been previously demonstrated:
• Rehbein et al., Double optical spring enhancement for gravitational wave detectors, Phys. 

Rev. D 78, 062003 (2008)
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Multiple Optical Springs

1. Stability
The spring system may be made stable with the combined effect of two or 

more springs

 In general, we can add a strong spring with weak anti-damping to a weak anti-
spring with strong damping to achieve stability
– one spring gives mostly restoring force, one gives mostly damping

e.g.
“weak stabilisation”:
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Multiple Optical Springs

2. Wide-band enhancement

Enhancement available to single springs is very narrow, and so only useful for 
highly-targeted GW searches
– Coupled oscillators can produce enhancement over a wider band

Each spring response can be modified via mutual interaction with shared optics

Further, if we can somehow combine the response to each coupled spring, we 
can observe resonant structures spanning an octave in frequency
– Electronic summing (at the expense of increased noise); subject to relative phase of 

each signal
– Frequency-dependent homodyne read-out?
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Experimental Setup

The experimental setup:
– We want a system flexible enough to investigate multiple springs, stable 

configurations and control strategies
– Model system with two cavities coupled mechanically via a shared mirror (with 

optional optical coupling at a later stage)

– Flexible model of equivalent system to GW detector, but easier to study on a 
prototype scale
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Objectives

This system is very flexible, allowing us to cover three main objectives of 
experimentation:
1. Purely mechanical coupling between the two cavities

• Each cavity aligned slightly off-axis with respect to other, to ensure no optical coupling
• Production and characterisation of broad resonant structures in the few hundred Hz to 

1kHz range
• Combination of coupled spring responses to give wide-band resonant response

2. Optical and mechanical coupling between the two cavities
• Alignment of both cavities, modification of shared optic to tuneable etalon, allowing 

control of optical coupling
• Further investigation of coupled spring responses, extending to dual-carrier spring stability
• Further feedback paths required for control
• Simulations ongoing

3. Investigation of stability and control strategies
• Additional AOM paths allowing for injection of sub-carriers
• Optical “trapping” of shared mass [3]?
• Investigate control strategies for radiation-pressure-dominated systems
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Simulations

Simulate modifications to isolated spring transfer functions due to coupling of 
springs at the Central Test Mass (CTM)

For purely mechanical coupling of cavities, we model the shared CTM as an 
opaque optic (achieved in practice by slight relative angular misalignment of each 
cavity)

Summing the response of each cavity to each coupled spring, we can produce 
wide-band resonant structures, corresponding to wide-band improvement in 
quantum-limited sensitivity

These simulations include losses in the optics, of realistic values comparable to 
the loss estimates for the real optics
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Simulations

Here, input power to each cavity is 2W, each detuning is -2 and 0.5 respectively, expressed as fractions of the cavity linewidth.
 Will require widening of the detuning range
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Simulations

Coating thermal noise is a factor ~5 higher than quantum noise, so we must 
measure the modified spring structures via in-loop cavity transfer functions

[Alternatively, local readout of the light central mass (c.f. optical bar)]

In practice, such signals 
will be read out from the 
photodiodes on the input 
bench used for PDH 
locking of each cavity.
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Control and Stability

3. Investigation of stability and control strategies
• Additional AOM paths allowing for injection of sub-carriers
• Optical “trapping” of shared mass?
• Investigate control strategies for radiation-pressure-dominated systems

• Further to achieving stable combined spring configurations, there are three key 
challenges to our control systems:

1. Systems must be able to cope with evolving dynamics as power builds up to operating 
level (up to tens of kW on-resonance)

2. Strong control to stabilise the multiple optical springs in the system
3. Reduction of back-action noise from position sensing – sensing and controls able to 

preserve the quantum state of the system

• … as well as other issues for stability:
» Auto-alignment systems (spot position detectors, feedback to 

control coils) to stabilise angular instabilities due to radiation-
pressure effects

13



N. Gordon GWADW, May 2013

 This new work requires us to modify the current laboratory infrastructure
– Currently single 10m end-pumped cavity in a single vacuum system
– We will need to fold our two-cavity system to fit in the same infrastructure

– So, we need nine new suspension systems, subject to the following requirements:
• Simple in design and adaptable, for further application during and following this work
• Provide displacement noise of in the experimental region (above 

~300Hz)

New Optic Suspensions

10m
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– Isolation: double-pendulum suspensions mounted upon optical breadboards 
with three layers of rubber stack pre-isolation

New Optic Suspensions
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– All suspensions based on the same simple structure

New Optic Suspensions
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On-going Work

 “To do” list:
– Simulations for e.g. aLIGO or ET parameters

• Full interferometer model incorporating multiple springs, novel cavity setup

– Construction and installation of new suspension systems.
• Beginning now
• Mechanical parts being delivered
• Coated optics arriving early next month

– Setting up of new input optics, RF electronics and control systems.

– Aiming to have the coupled-cavity system up and running by the end of the 
summer.
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Summary

Aim to construct a two-mode optical spring system in a 10m, high-finesse coupled-
cavity experiment illuminated with up to 5W total input light at 1064nm, with the 
eventual goal being to produce and characterise a broad resonant structure in the 
few hundred Hz to 1kHz range.

The flexible new laboratory layout also allows us to both optically and mechanically 
couple the cavities, with the coupling mass modified to be a tuneable etalon, to 
investigate more complex resonant responses.

To facilitate this, a completely new suspension design will be adopted for the 
Glasgow 10m prototype – simple, effective and adaptable.

We also aim to investigate the control challenges to radiation-pressure-dominated 
systems.

Commissioning due to begin next month.
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