

Multiple Optical Springs in Coupled Resonators

N. Gordon, B. Barr, A. Bell, C. Graef, S. Hild, S. Huttner, S. Leavey, J. Macarthur, B. Sorazu, K. A. Strain

Outline

Surpassing the free-mass Standard Quantum Limit

- Single optical springs
- Multiple optical springs

Coupled-cavity test system for Multiple Optical Springs

- Experimental design
- Simulations
- New optic suspensions at the Glasgow 10m Prototype

On-going Work

Optical Springs

- Suspended optical cavity, detuned from resonance
- Can create linear dependence of intra-cavity power, and hence radiation pressure force, on mirror position – i.e. a spring:
 - Radiation pressure force
 - \Rightarrow Mirror movement
 - \Rightarrow Change in stored power
 - \Rightarrow Change in radiation pressure force...

• Opto-mechanical coupling of cavity optics

- Various applications in GW field:
 - Transducer for GW signals to mirror movement in the local frame
 - Narrowband sensitivity improvements in the detection band

• Narrowband sensitivity improvements in the detection band

- Transformation of test-mass into a more responsive object.

» Free-mass force susceptibility:

» Harmonic oscillator:

$$\chi_{\rm FM} = \frac{1}{\mu \Omega^2}$$
$$\chi_{\rm HO} = \frac{1}{\mu \left(\Omega^2 - \Omega_0^2\right)}$$

- Resonant enhancement of signal **before** read-out
- Essentially noise-free amplification within the resonant bandwidth the optical spring adds no "classical" noise

Optical Springs

Optical Springs at the Glasgow 10m prototype

<u>2011</u>

Optical spring in high-finesse cavity. [1] Spring read out from in-loop transfer functions.

Maximum spring observed at **496Hz**, corresponding to spring constant of **9.4e5 N/m**.

[1] M. Edgar, Ph.D. thesis, University of Glasgow (2011)[2] J. Macarthur, Second Year Research Report, University of Glasgow (2012)

<u> 2012 – present</u>

"Local Readout" experiment: Optics rigidly coupled beneath spring resonant frequency.

Local readout allows monitoring of light mirror position without disturbing quantum state of system. [2]

Can be applied to e.g. "Optical Bar" system – GW signal extracted from local readout of light coupled mirror below spring resonance

N. Gordon

But, not ideal:

- A single optical spring is inherently **unstable**
- The enhancement available to a single optical spring is narrow

- Using **multiple** detuned optical fields, we can address some of these issues:
 - A stable configuration may be achieved by the inclusion of a second carrier, with each detuned appropriately such that the combined effect is stable
 - Multiple springs can be used to beneficially re-shape the noise spectral density of a detector for wider-band enhancement
 - Has been previously demonstrated:
 - Rehbein et al., *Double optical spring enhancement for gravitational wave detectors,* Phys. Rev. D 78, 062003 (2008)

Multiple Optical Springs

1. Stability

• The spring system may be made **stable** with the combined effect of two or more springs

- In general, we can add a **strong** spring with **weak** anti-damping to a **weak** antispring with **strong** damping to achieve stability
 - one spring gives mostly restoring force, one gives mostly damping

Multiple Optical Springs

2. Wide-band enhancement

- Enhancement available to single springs is very **narrow**, and so only useful for highly-targeted GW searches
 - Coupled oscillators can produce enhancement over a wider band
- Each spring response can be modified via mutual interaction with shared optics
- Further, if we can somehow **combine** the response to each coupled spring, we can observe resonant structures spanning an octave in frequency
 - Electronic summing (at the expense of increased noise); subject to relative phase of each signal
 - Frequency-dependent homodyne read-out?

Experimental Setup

• The experimental setup:

- We want a system flexible enough to investigate multiple springs, stable configurations and control strategies
- Model system with two cavities coupled mechanically via a shared mirror (with optional optical coupling at a later stage)

- Flexible model of equivalent system to GW detector, but easier to study on a prototype scale
- N. Gordon

GWADW, May 2013

- This system is very flexible, allowing us to cover three main objectives of experimentation:
 - 1. Purely mechanical coupling between the two cavities
 - Each cavity aligned slightly off-axis with respect to other, to ensure no optical coupling
 - Production and characterisation of broad resonant structures in the few hundred Hz to 1kHz range
 - Combination of coupled spring responses to give wide-band resonant response
 - 2. Optical and mechanical coupling between the two cavities
 - Alignment of both cavities, modification of shared optic to **tuneable etalon**, allowing control of optical coupling
 - Further investigation of coupled spring responses, extending to dual-carrier spring stability
 - Further feedback paths required for control
 - Simulations ongoing
 - 3. Investigation of stability and control strategies
 - Additional AOM paths allowing for injection of sub-carriers
 - Optical "trapping" of shared mass [3]?
 - Investigate control strategies for radiation-pressure-dominated systems

[3] T. Corbitt et al., An All-Optical Trap for a Gram-Scale Mirror, PRL 98,150802 (2007)

- Simulate modifications to isolated spring transfer functions due to coupling of springs at the Central Test Mass (CTM)
- For **purely mechanical coupling** of cavities, we model the shared CTM as an opaque optic (achieved in practice by slight relative angular misalignment of each cavity)
- Summing the response of each cavity to each coupled spring, we can produce wide-band resonant structures, corresponding to wide-band improvement in quantum-limited sensitivity
- These simulations **include losses** in the optics, of realistic values comparable to the loss estimates for the real optics

Simulations

Here, input power to each cavity is 2W, each detuning is -2 and 0.5 respectively, expressed as fractions of the cavity linewidth.

> Will require widening of the detuning range

N. Gordon

GWADW, May 2013

• Coating thermal noise is a factor ~5 higher than quantum noise, so we must measure the modified spring structures via in-loop cavity transfer functions [Alternatively, local readout of the light central mass (c.f. optical bar)]

In practice, such signals will be read out from the photodiodes on the input bench used for PDH locking of each cavity.

Control and Stability

- 3. Investigation of stability and control strategies
 - Additional AOM paths allowing for injection of sub-carriers
 - Optical "trapping" of shared mass?
 - Investigate control strategies for radiation-pressure-dominated systems
 - Further to achieving stable combined spring configurations, there are three key challenges to our control systems:
 - 1. Systems must be able to cope with **evolving dynamics** as power builds up to operating level (up to tens of kW on-resonance)
 - 2. Strong control to stabilise the multiple optical springs in the system
 - **3.** Reduction of back-action noise from position sensing sensing and controls able to preserve the quantum state of the system
 - ... as well as other issues for stability:
 - » Auto-alignment systems (spot position detectors, feedback to control coils) to stabilise angular instabilities due to radiationpressure effects

New Optic Suspensions

- This new work requires us to modify the current laboratory infrastructure
 - Currently single 10m end-pumped cavity in a single vacuum system
 - We will need to fold our two-cavity system to fit in the same infrastructure

- So, we need **nine** new suspension systems, subject to the following requirements:
 - Simple in design and adaptable, for further application during and following this work
 - Provide displacement noise of $\leq 10^{-18} {\rm m}/\sqrt{{\rm Hz}}$ in the experimental region (above ~300Hz)

 Isolation: double-pendulum suspensions mounted upon optical breadboards with three layers of rubber stack pre-isolation

New Optic Suspensions

- All suspensions based on the same simple structure

On-going Work

- "To do" list:
 - Simulations for e.g. aLIGO or ET parameters
 - Full interferometer model incorporating multiple springs, novel cavity setup
 - Construction and installation of new suspension systems.
 - Beginning now
 - Mechanical parts being delivered
 - Coated optics arriving early next month
 - Setting up of new input optics, RF electronics and control systems.
 - Aiming to have the coupled-cavity system up and running by the end of the summer.

- Aim to construct a two-mode optical spring system in a 10m, high-finesse coupledcavity experiment illuminated with up to 5W total input light at 1064nm, with the eventual goal being to produce and characterise a broad resonant structure in the few hundred Hz to 1kHz range.
- The flexible new laboratory layout also allows us to both optically and mechanically couple the cavities, with the coupling mass modified to be a tuneable etalon, to investigate more complex resonant responses.
- To facilitate this, a completely new suspension design will be adopted for the Glasgow 10m prototype simple, effective and adaptable.
- We also aim to investigate the control challenges to radiation-pressure-dominated systems.
- Commissioning due to begin next month.