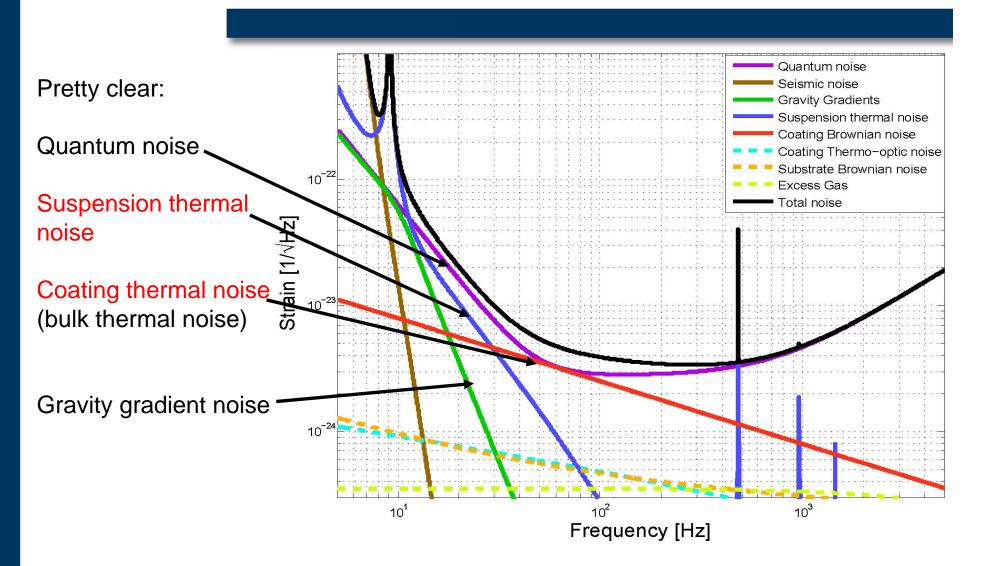


Advances and Challenges in Thermal Noise

INTRACTOR |

7 ma


1000

Sheila Rowan University of Glasgow

GWADW Elba 2013

Beyond Advanced detectors – what are the top level challenges?

To get to that point what were the challenges..?

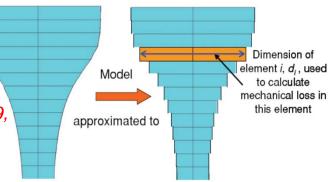
Fused silica quasi-monolithic suspensions

1. Conceptual use based on empirical meas. of low

loss/ 'small scale' demonstrations

 (Weiss (way back)...Braginsky 1994, 1996, ... Rowan PLA1997a, PLA1997b, etc....Cagnoli PRL2000, Gretarsson PLA2000, Penn RSI2001, Willems PLA2002, Amico2002, Numata2002.. and many many more....)

~2.8kg mass on 2 fibres


2. Understanding the physics (There were 'unknown unknowns'...)

- thermal noise from spatially inhomogeneous loss (Levin PRD 1998)
- cancellation of thermo-elastic suspension noise in loaded fibres (Cagnoli PRB2002)
- correct calculation of dilution (Willems PLA2002) and expected thermal noise with FEA, (Cumming CQG2009, Cumming CQG2012,...)

Proper design of the Advanced detector

suspensions would not have been possible without

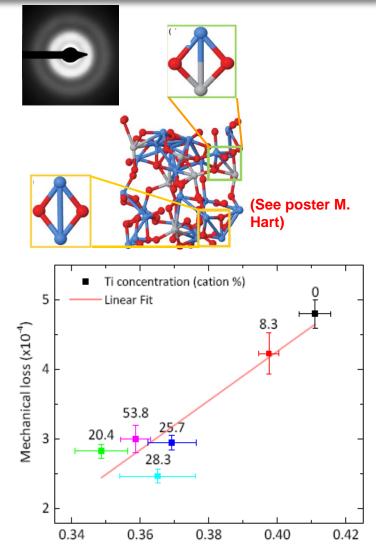
these....

To get to that point what are/were the challenges..?

Silica quasi-monolithic suspensions

- 3. Construction challenges \checkmark
- reliably making low loss/high strength silica-silica joints (Rowan PLA1998, Smith CQG2003, Sneddon CQG2003, Cunningham CQG2010 etc)
- fabricating silica fibres to the specifications required (Heptonstall 2011, Cumming 2012 etc etc)
- qualification of the resulting suspensions (Cumming 2012, Bell in prep,)

talk at this meeting by P. Puppo)



What are/were the challenges..?

Coating thermal noise

- Empirical measurements of magnitude of coating loss ✓
 - Crooks/Harry/Penn/Martin/Yamamoto/Jena/LMA and others...
- 2. Understanding the physics X
 - What causes the loss....? (Bassiri, Hai Ping-Cheng, LMA et al, ...)
 - What are the other relevant coating properties?, *Abernathy (in prep), Gretarsson (in prep)....*
 - Modelling of coating thermal noise (Levin, Nakagawa, Harry, Evans, others..)
 - Still ongoing....
- 3. Construction challenges ?
 - Ongoing in collaboration with LMA Advanced detector coatings

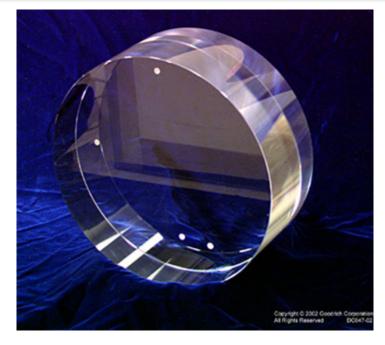
Advances: See talk by R. Flaminio,

1st Peak FWHM

•

Silicon/sapphire

- 1. Conceptual use..... based on empirical measurements of mechanical loss/ demonstrations
- 2. Understanding the physics
- 3. Construction challenges


Room T. upgrades to the Advanced detectors (160kg fused silica test masses)

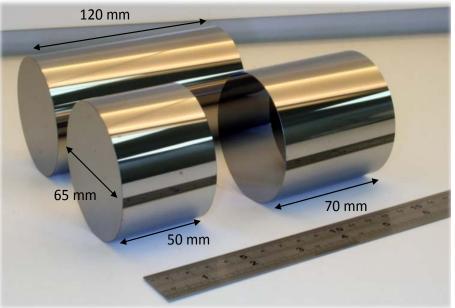
Cryogenic upgrades to advanced detectors/KAGRA/ ET

Sapphire

- Conceptual use..... based on empirical measurements of mechanical loss/demonstrations
 - Historical demonstrations of low loss by Braginsky et al
 - Many years of research in Japan (Eg: Uchiyama1998,1999 etc)
 - (Lot of R&D on the optical properties done at time of mirror materials downselect for aLIGO)
 - Challenge ramp up to full size sapphire optics and engineered suspensions on the KAGRA timescale
 - <u>Advances: KAGRA design: See talk</u> by K. Yamamoto

Sapphire piece used in the spot polishing compensation demonstration; 25cm diameter sample (photo courtesy Goodrich)

• Work still needed - even on empirical loss measurements



Silicon

We are about where we were for silica suspensions in 1994/8...

Challenge #1 - do it all faster this time !

- 1. Conceptual use...... based on empirical measurements of mechanical loss/demonstrations (McGuigan, Winkler1991, Rowan2000, Rowan2003, Amico2004, Reid2006, Nawrodt2013, the ET design study, Red/Blue/Green team designs etc etc)
- What kind of silicon do we need for the mirrors?..and suspension elements?
 (Czochralski???/Float zone –more pure but size limited..?)
- Why do different types of silicon have the loss they do ? crystal cut? impurities? combination of both..?
 - Work ongoing in Jena/Glasgow
 - Advances: talk by G. Hoffman

• Work still needed - even on empirical loss measurements

2. Understanding the physics...silicon/sapphire

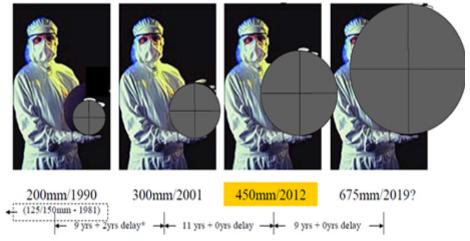
- Silicon: right now at the stage of interacting with the basic loss measurements – making sure we can quantify and identify loss (effect of surfaces, doping, cut etc)
- Moving to a new regime for both silicon and sapphire
 - **Challenges**: what about non-equilibrium thermal noise effects..?
 - Advances : see talk from Claudia Lazzaro

Challenges – what about Donald Rumsfeld????? (...the unknown-unknowns...)?

University of Glasgow Challenges for the next stage?

• Silicon /sapphire

- 3. Construction challenges
- Fibre shape strength/thermal noise (cooling?) what is the 'right' design in silicon/sapphire? (extra challenges over silica)
 - Advances: Silicon (see poster G. Hammond)
 - Advances: Sapphire LOTS of work over last year under 'Elites' award linking ET/KAGRA research
 - See talk by K. Yamamoto / poster G. Hoffman
- Fabricating suspension elements (can't just weld.... can etch, grow..?)



- Challenges quality? Strength? Reproducibility?
- Challenges silicon how to make it ...?

University of Glasgow Challenges for the next stage?

Silicon /sapphire

- 3. Construction challenges more!
- Can we get big enough bits of the -right kind- of silicon/sapphire..?
 - **Challenges -** Can we piggy back on commercial developments or not?
- Jointing crystalline materials
 - Challenges can't weld...can bond -Previous bonding results Dari 2010 -<10Mpa (room T)
 - Advances: Silicon:(Beveridge 2013) tailored jointing treatment – reliable at 77K
 - Advances: Sapphire: new cryogenic sapphire bonding results – <u>poster R</u>. <u>Douglas</u>
 - Challenges what will the loss and thermal noise be?

Sapphire bonded samples which broke across the bond surface, but with damage to the bulk sapphire. Strengths 60-80MPa at 77K

Challenges for the next stage?

Coatings

- 1. Conceptual use..... based on empirical measurements of mechanical loss and 'small scale' demonstrations
- Amorphous coatings:
 - LOTS of ongoing cryogenic studies
 - Challenge get good optical AND mechanical loss.....
- Crystalline coatings:
 - Advances: x3 improvement in thermal noise using AlGaAs?
 - talk by G. Cole
 - Advances: equivalent improvement from AlGaP?
 - talk by A. Lin
- Waveguide reflectors:
 - Advances: new formalism to better estimate expected thermal noise also looks good for structured silicon......

talk by S. Kroker

Challenges for the next stage?

Coatings

2. Understanding the physics....

- Amorphous coatings see earlier work in progress
- Crystalline coatings
 - Challenges: all experience suggests that small scale tests don't tell you everything you need.....
 - See talk by M. Abernathy for the known unknowns, what about the unknown unknowns....?
- Waveguides
 - Challenges: experimental demonstration of improved thermal noise performance
- Modelling can we find a topology that is less sensitive to coating thermal noise? <u>Advances – talk S. Ballmer</u>

3. Construction challenges

- Amorphous see advanced detectors + challenge of new materials...
- Crystalline coatings: Challenge: need reliably coated optics in large sizes (so far nothing has scaled up –exactly- the way we expected.....)
- Waveguides **manufacturing challenges:** (what will drive the improvements we want in this ? (so far nothing has scaled up –exactly- the way we expected.....)

Challenges for the next stage?

• Two possible outcomes from this talk

Or

