

Blue Team

- Michael Coughlin
- Yanbei Chen
- Haixing Miao
- Eric Gustafson
- John Miller
- Matt Evans
- Norna Robertson
- Calum Torrie
- Alastair Heptonstall
- Eric Quintero
- Bram Slagmolen
- Valery Frolov
- Keiko Kokeyama
- Nicolas Smith
- Robert Schofield
- Warren Johnson
- Hiro Yamamoto
- Andri Gretarsson
- Lisa Barsotti
- Rana Adhikari
- Jenne Driggers
- Bill Kells
- Mindy Jacobson

Stefan Hild

LIGO-G1300577-v1

Red Team

B. Barr¹, A. Bell¹, C. Bell¹, C. Bond², D. Brown², F. Brueckner², L. Carbone², K. Craig¹, A. Cumming¹, S. Danilishin³, K. Dooley⁴, A. Freise², T. Fricke⁴, P. Fulda², S. Giampsis⁵,

N. Gordon¹, H. Grote⁴, G. Hammond¹, J. Harms⁶, S. Hild^{1,*}, J. Hough ¹, S. Huttner¹, R. Kumar¹, H. Lück⁴, N. Lockerbie⁷, I. Macarthur¹, I. Martin¹, P. Murray², S. Reid¹, S. Rowen ¹

H. Lück⁴, N. Lockerbie⁷, J. Macarthur¹, I. Martin¹, P. Murray², S. Reid¹, S. Rowan ¹,

D. Shoemaker⁸, B. Sorazu¹, K. Strain¹, S. Tarabrin⁴, K. Tokmakov¹ and N. Voronchev³

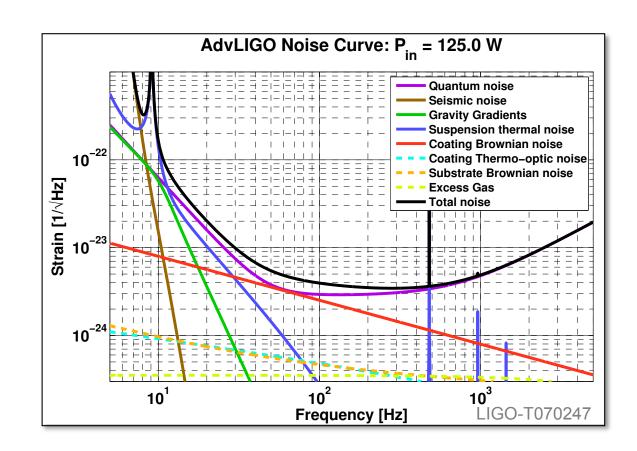
Green Team

Stefan Ballmer*, Koji Arai, Haixing Miao, David Ottaway, Rich Mittleman, Jim Lough, Antonio Perreca, Gregg Harry, Jeff Kissel, Giacomo Ciani, Riccardo DeSalvo, Sam Waldman, Guido Mueller, Vuk Mandic, Zach Korth, Rich Abbott, Keita Kawabe, Jamie Rollins, David Yeaton-Massey

Contents

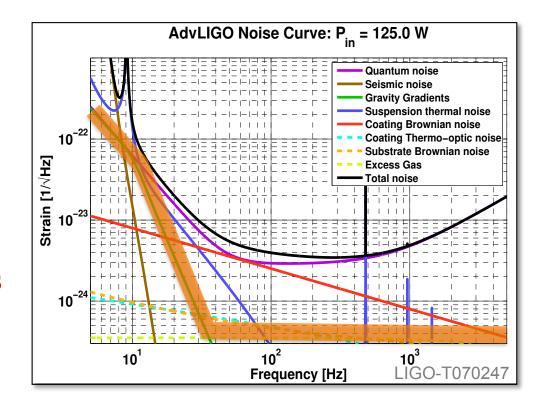
- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- ⇒ Example upgrade 2: Team Green design(s)
- Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- ⇒ What can we learn from all this?

Increasing Effort, Cost, Ambition


Motivation for Advanced LIGO upgrades

- ⇒ The advanced LIGO baseline detectors are expected to accomplish the first direct detection of gravitational waves.
 - See also Abadie et al, CQG, 2010, 27, 173001
- ⇒ However, these observations are likely to be of modest signalto-noise ratio (SNR). If we want to access the full physics of the sources we will need to increase the SNR.
- ⇒ As we will see it seems possible to upgrade the aLIGO instruments gaining a broadband sensitivity improvement by a factor of 3-5 (roughly equivalent to increasing the event rate by a factor 25-100).
- ⇒ For details on the exciting science aLIGO upgrades will bring into our reach please see: Adhikari et al: 'Astrophysical Motivations for the Third Generation LIGO Detectors', LIGO-T1200099-v2

Noise Sources limiting the Advanced Detectors


- In order to understand how we can potentially improve 2G detectors, we need to see what they are limited by:
- Quantum Noise limits most of the frequency range.
- **Coating Brownian limits (or is** close) in the range from 50 to 100Hz.
- Below 50Hz we are limited by 'walls' made of **Suspension** Thermal, Gravity Gradient and Seismic noise.

Upgrades within the Advanced LIGO infrastructure

- The advanced LIGO baseline sensitivity is far away from the infrastructure limits.
- Infrastructure limit is usually defined as combination of residual gas noise and gravity gradient noise.
- So there is plenty of room for advanced LIGO upgrades within the existing infrastructure! And this will be the focus of the rest of this presentation.

Strawman Exercise

- ⇒ About 1.5 years ago the LIGO Scientific Collaboration decided to initiate an effort to develop simple design studies (so-called Strawman designs) for aLIGO upgrades.
- ⇒ 3 teams formed: Blue (headed by R.Adhikari), Green (headed by S.Ballmer) and Red (headed by S.Hild).
- Some interesting aspects:

When do we need to be ready for the upgrades?

Can we do the upgrades in an incremental way?

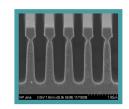
What R&D do we need to carry out over the next few years?

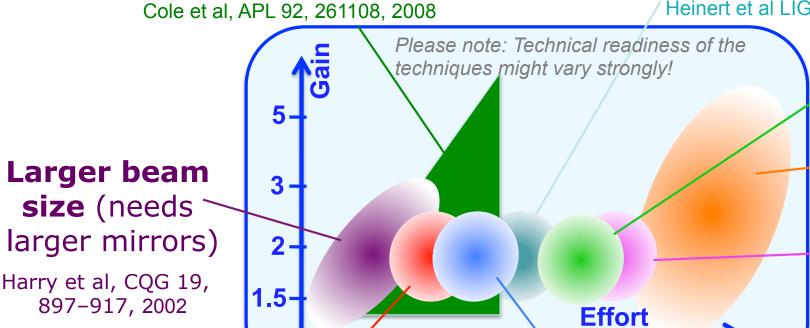
How much improvent is possible?

What is the required/ available budget?

Contents

- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- ⇒ Example upgrade 2: Team Green design(s)
- **⇒** Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- ⇒ What can we learn from all this?


How to reduce Mirror Thermal Noise?


Improved coating materials (e.g. crystalline coatings like AlGaAs, GaPAs)

Waveguide mirrors

Brueckner et al, Opt. Expr 17, 163, 2009

Heinert et al LIGO P1300034-v1

Resonant Delay Line

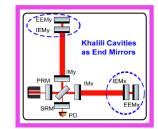
Cryogenic mirrors

Uchiyama et al, PRL 108, 141101 (2012)

Khalili cavities

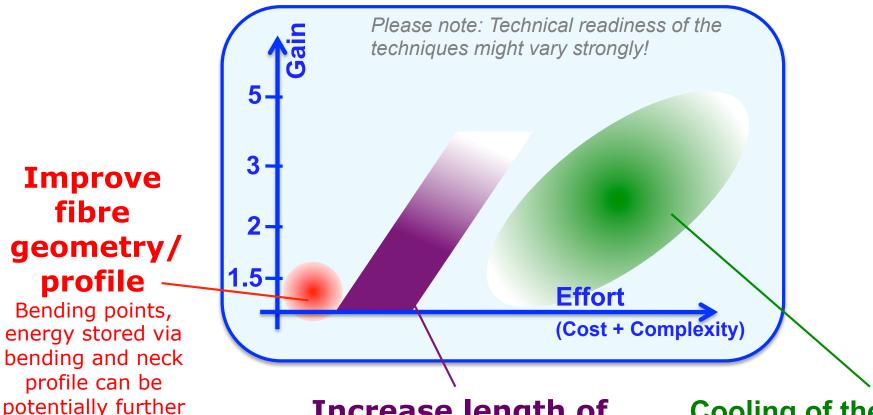
Khalili, PLA 334, 67, 2005 Gurkovsky et al, PLA 375,

4147, 2011


Different beam shape

Mours et al, CQG, 2006, 23, 5777 Chelkowski et al, PRD, 2009, 79, 122002

Amorphous Silicon coatings

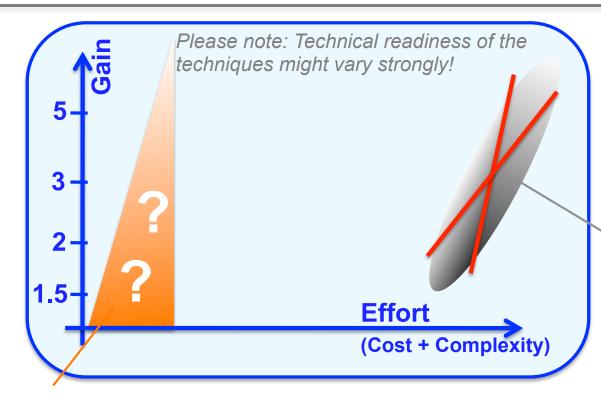

(Cost + Complexity)

Liu et al, PRB 58, 9067, 1998

How to reduce Suspension Thermal Noise?

Increase length of final pendulum stage.

Allows the push suspension thermal noise out detection band.


Cooling of the suspension to cryogenic temperatures.

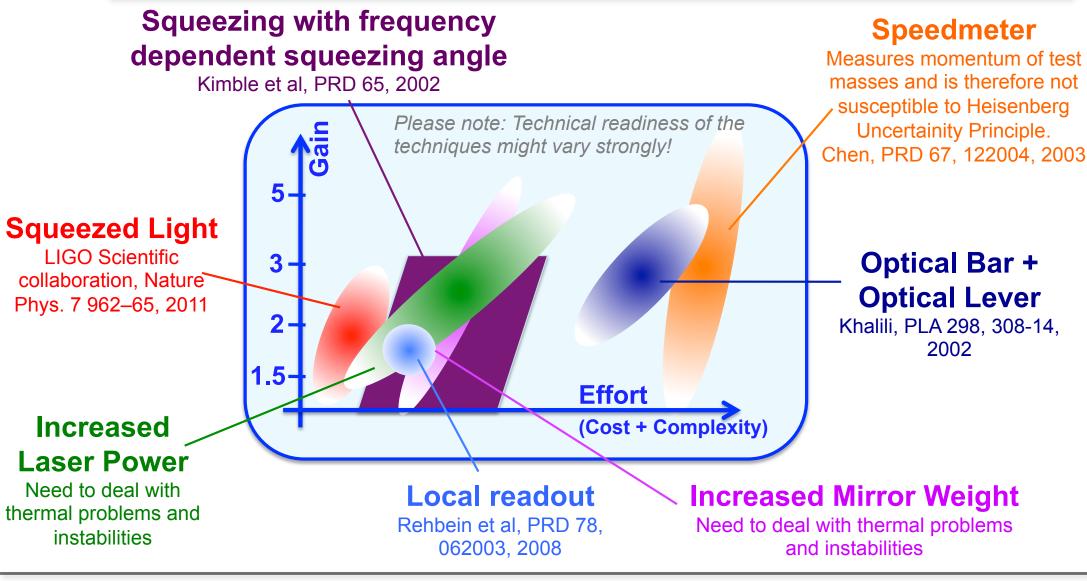
Usually also requires a change of materials.

optimised.

How to reduce Gravity Gradient Noise?

Reduce seismic noise at site., i.e. select a quieter site, potentially underground.

Beker et al, Journal of Physics: Conference Series 363 (2012) 012004


Subtraction of gravity gradient noise using an array of seismometers.

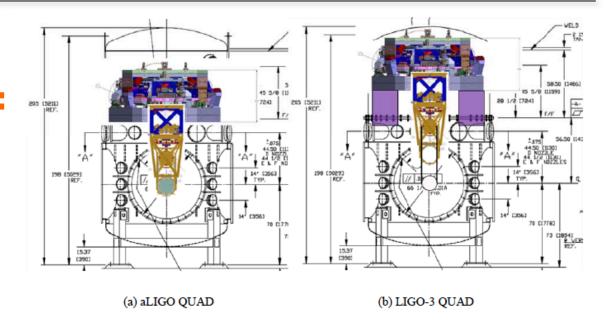
- Beker et al: General Relativity and Gravitation Volume 43, Number 2 (2011), 623-656
- Driggers et al: arXiv:1207.0275v1 [gr-qc]

Obviously not possible within the LIGO infrastructure (but consider for other projects, see GW4 session tomorrow)

How to reduce Quantum Noise?

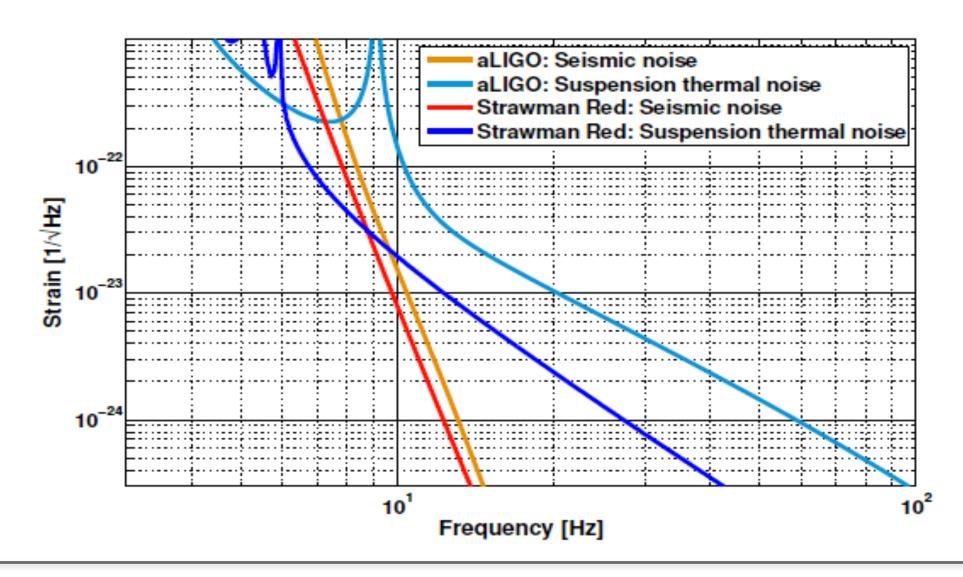
Contents

- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- ⇒ Example upgrade 2: Team Green design(s)
- **⇒** Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- What can we learn from all this?

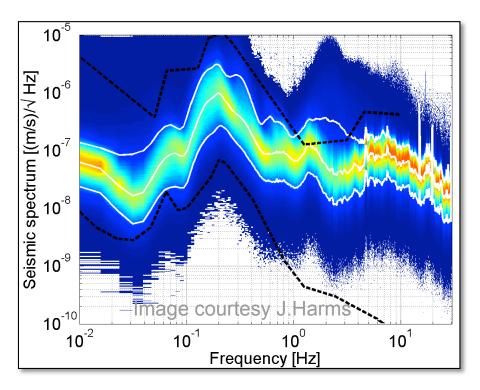

Increasing Effort, Cost, Ambition

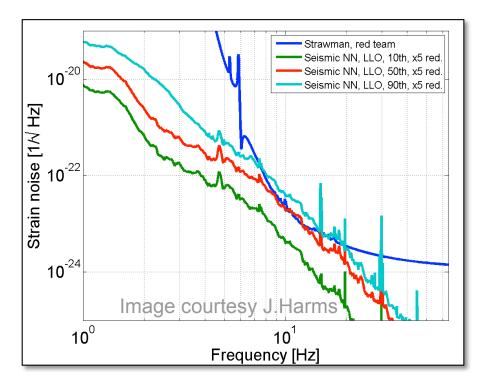
Suspension Thermal Noise

Assume a boosted aLIGO Quad-suspension:


- □ Increased length of last stage to 1.2m to reduce suspension thermal noise.
- ⇒Increased mirror mass of 160kg to reduce suspension thermal noise (and radiation pressure noise and coating noise)

Test Masses and Suspensions	3	
Mirror Material	Fused Silica	Fused Silica
Main Test Mass Diameter	$35\mathrm{cm}$	55 cm
Main Test Mass Weight	$42\mathrm{kg}$	$160\mathrm{kg}$
Masses in Main Quad (from top)	$22\mathrm{kg}/22\mathrm{kg}/40\mathrm{kg}/40\mathrm{kg}$	$44 \mathrm{kg}/66 \mathrm{kg}/120 \mathrm{kg}/160 \mathrm{kg}$
Masses in Reaction Chain (from top)	$22{\rm kg}/22{\rm kg}/40{\rm kg}/40{\rm kg}$	$22 \mathrm{kg}/22 \mathrm{kg}/40 \mathrm{kg}/40 \mathrm{kg}$
Total Mass of a Main Suspension	$250\mathrm{kg}$	$520\mathrm{kg}$
Length of Final Suspension Stage	0.6 m	1.2 m
Fused Silica Fibre Diameter	$400\mu\mathrm{m}$	$566\mu\mathrm{m}$
Fibre Diameter at Bending Point	$800\mu\mathrm{m}$	$1624\mu\mathrm{m}$


Suspension Thermal Noise



Gravity Gradient Noise

- Red design assumes a reduction factor of 5.
- ⇒ Please note seismic noise is not constant. The factor 5 assumed guarantees that 90% of the time the Newtonian noise would be below the LIGO-3 red sensitivity.

Coating Brownian noise

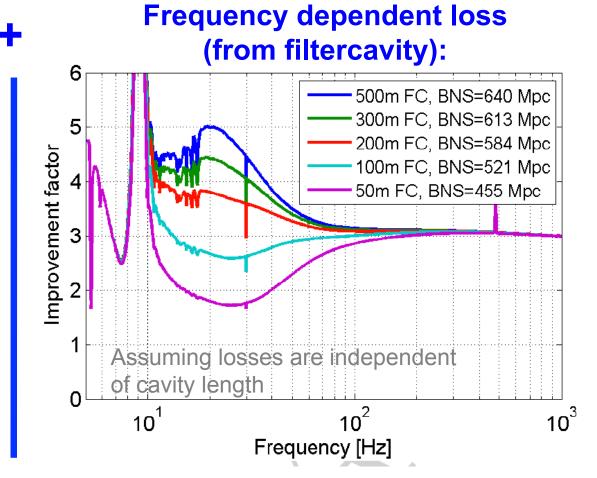
- Assumed an overall improvement by a factor3.2.
- ⇒ Factor 1.6 from increased beam sizes.
- Another factor of 2 on top of this from either:
 - Better coatings See talks by G.Cole and A.Lin
 - Khalili cavities
 - Resonant waveguide mirrors

See news in S.Kroker's talk

Quantum noise

- ⇒ We kept the interferometer configuration and the mirror reflectivities the same as in aLIGO baseline.
- Introduced frequency dependent input squeezing.
- Key aspects: achievable squeezing level & required length of filter cavity

Laser and Optical Parameter	rs aLIGO baseline	LIGO-3 red
Laser Wavelength	1064 nm	$1064\mathrm{nm}$
Optical Power at Test Masses	730 kW	730 kW
Arm Cavity Finesse	450	450
Signal Recycling	T = 20%, tuned	T = 20%, tuned
Squeezing Factor	n.a.	$20\mathrm{dB}$
Filtercavity (FC) length	n.a.	300 m
FC Detuning	n.a.	-16.8 Hz
FC Input Mirror Transmittance	n.a.	425 ppm
Squeezing Losses	n.a.	9% + 30 ppm roundtrip in FC

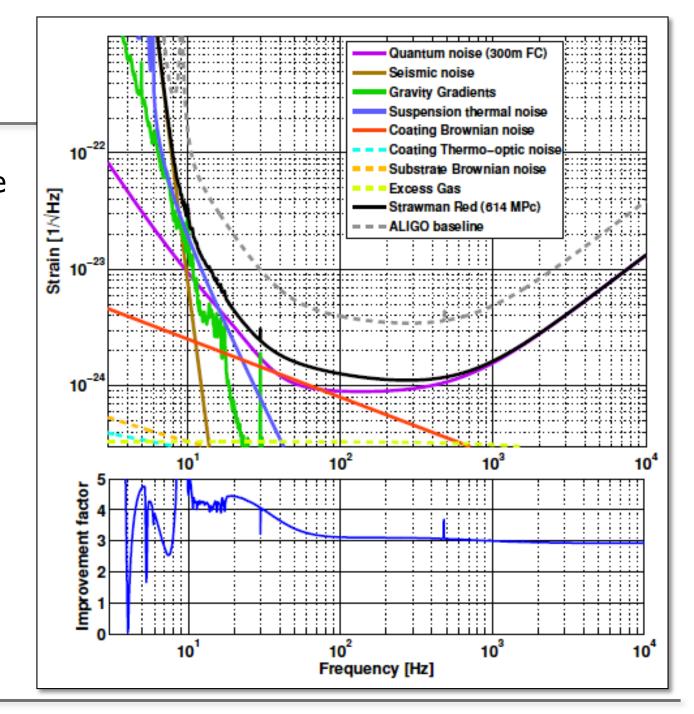


Squeezing losses

Frequency independent losses:

- Generation of squeezing: 3 %
- Optical isolation: 3 x 0.8 %
- Mode matching to IFO and to OMC: 2 x 1 %
- OMC loss and QE of PD: 2 x 0.5 %
- Mode matching to filter cavity: 1%

= 9% in total



Starting from 20dB squeezing inside the squeezing crystal the losses reduce the observed squeezing to about 9-10dB

Team Red Sensitivity

- So if we put all the afore mentioned things together we get the following sensitivity:
- Overall an improvement of a factor 3 at all frequencies above 100 Hz. And a factor 3-4 below 100Hz.
- The binary neutron star inspiral range would improve from about 200 Mpc to above 600 Mpc.

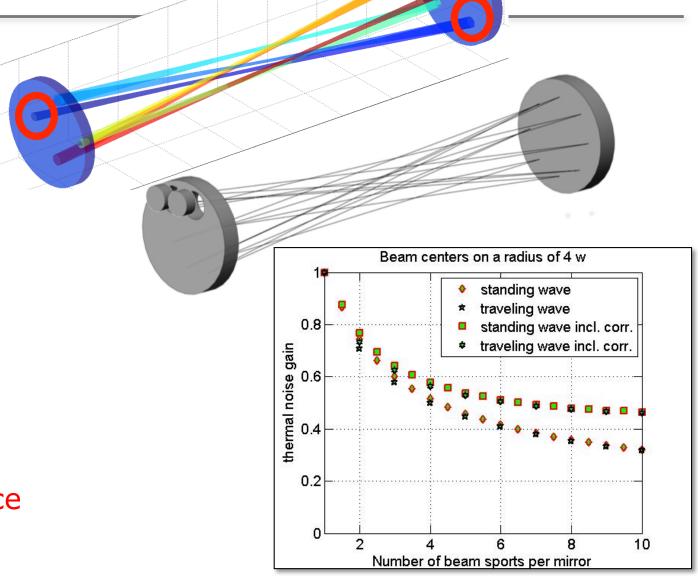
Team Red parameters

- Rough cost estimate (only hardware included) is about 20 million \$ per interferometer.
- Description of the Team Red Design can be found at https://dcc.ligo.org/cgi-bin/ private/DocDB/ShowDocument? docid=78100 or docid=86550
- The sensitivity data for the Team Red design are available at https://dcc.ligo.org/ cgi-bin/private/DocDB/ ShowDocument?docid=86562

Strawman Red Design Overview				
Subsystem and Parameters	Advanced LIGO Baseline Design	Strawman Red		
	Baseline Design	Design		
Sensitivity				
Binary Neutron Star Inspiral Range	200 Mpc	614 Mpc		
Anticipated Strain Sensitivity	$3.5 \cdot 10^{-24} / \sqrt{\text{Hz}} @ 300 \text{Hz}$	$1.2 \cdot 10^{-24} / \sqrt{\text{Hz}} @ 250 \text{Hz}$		
Instrument Topology				
Interferometer	Dual-recycled Michelson	Dual-recycled Michelson		
	with Armcavities	with Armcavities		
Quantum Noise Reduction	n.a	Frequency-dependent		
		input squeezing		
Laser and Optical Parameter	rs			
Laser Wavelength	1064 nm	1064 nm		
Optical Power at Test Masses	730 kW	730 kW		
Arm Cavity Finesse	450	450		
Signal Recycling	T = 20%, tuned	T = 20%, tuned		
Squeezing Factor	n.a.	20 dB		
Filtercavity (FC) length	n.a.	300 m		
FC Detuning	n.a.	-16.8 Hz		
FC Input Mirror Transmittance	n.a.	425 ppm		
Squeezing Losses	n.a.	9% + 30 ppm roundtrip in FC		
Test Masses and Suspensions				
Mirror Material	Fused Silica	Fused Silica		
Main Test Mass Diameter	$35\mathrm{cm}$	$55\mathrm{cm}$		
Main Test Mass Weight	42 kg	160 kg		
Masses in Main Quad (from top)	$22\mathrm{kg}/22\mathrm{kg}/40\mathrm{kg}/40\mathrm{kg}$	$44 \mathrm{kg}/66 \mathrm{kg}/120 \mathrm{kg}/160 \mathrm{kg}$		
Masses in Reaction Chain (from top)	$22\mathrm{kg}/22\mathrm{kg}/40\mathrm{kg}/40\mathrm{kg}$	$22 \mathrm{kg}/22 \mathrm{kg}/40 \mathrm{kg}/40 \mathrm{kg}$		
Total Mass of a Main Suspension	250 kg	520 kg		
Length of Final Suspension Stage	0.6 m	1.2 m		
Fused Silica Fibre Diameter	400 μm	566 μm		
Fibre Diameter at Bending Point	$800\mu\mathrm{m}$	$1624\mu\mathrm{m}$		
Coating Noise Reduction				
Improvement Factors	n.a.	factor 1.6 from increased beam		
		size PLUS factor 2 from either		
		(i) better coatings, OR (ii) Khalili		
		cavities, OR (iii) waveguides		
Operation Temperature	290 K	290 K		
IM/EM ROC	1934/2245 m	1849/2173 m		
IM/EM spotsize	5.31/6.21 cm	8.46/9.95 cm		
Khalili cavity length	n.a.	50 m		
Gravity Gradient Noise				
Assumed Seismic Level	???	LLO ETMX, 90th percentile		
Assumed subtraction factor	n.a.	5		

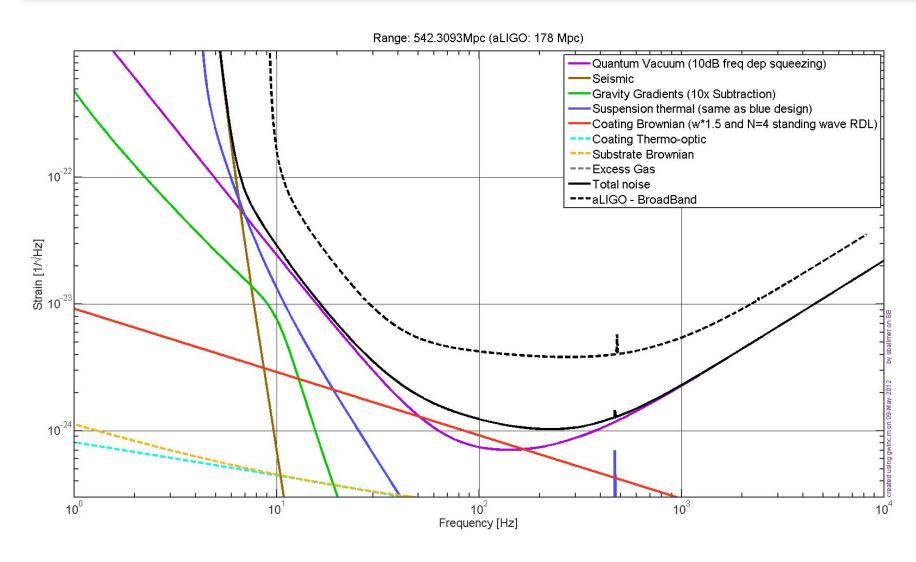
Contents

- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- ⇒ Example upgrade 2: Team Green design(s)
- **⇒** Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- What can we learn from all this?

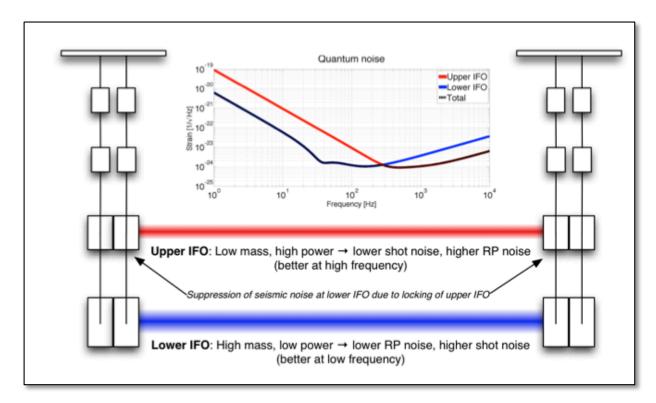


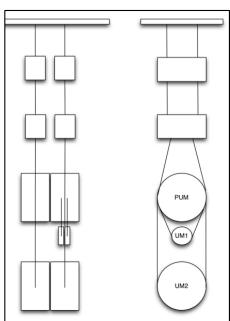
Green Design (1)

Green designs focus on coating noise reduction.


Idea to use a mixture of a Heriott delay line and a FB-cavity.

- 2 different modes: Traveling Wave vs Standing Wave
- Requires very large mirrors, with holes or locally modified surface


Green Design (2)

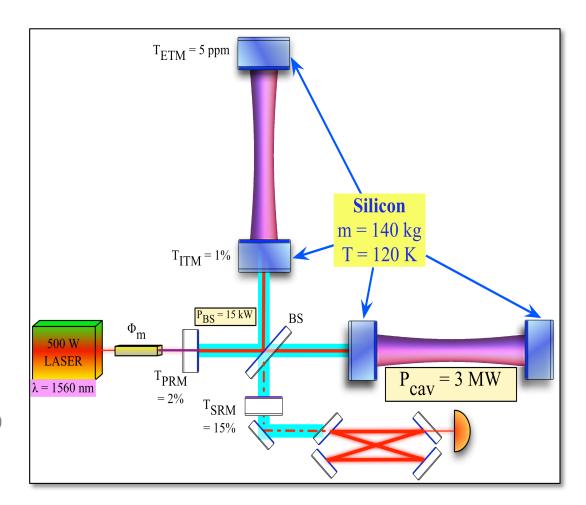


Green Design (3)

⇒ 2nd idea investigated: Combination of a Suspension Point Interferometer + full room temperature Xylophone.

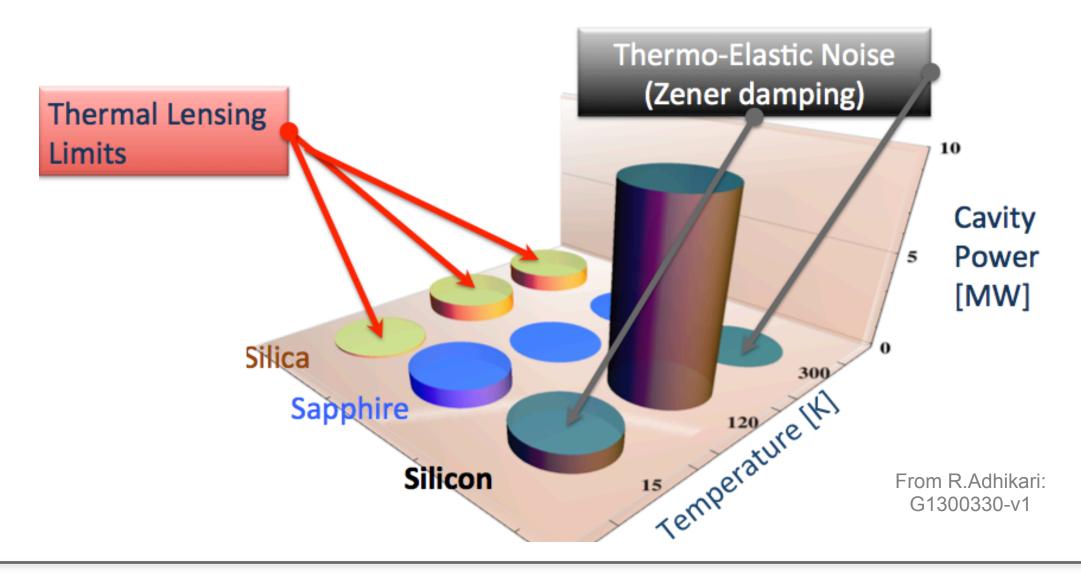
Contents

- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- ⇒ Example upgrade 2: Team Green design(s)
- ⇒ Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- What can we learn from all this?

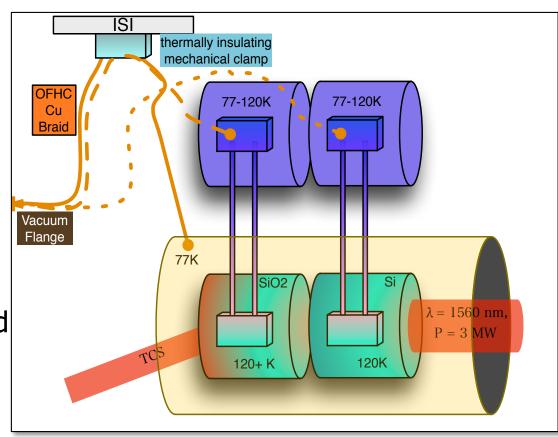


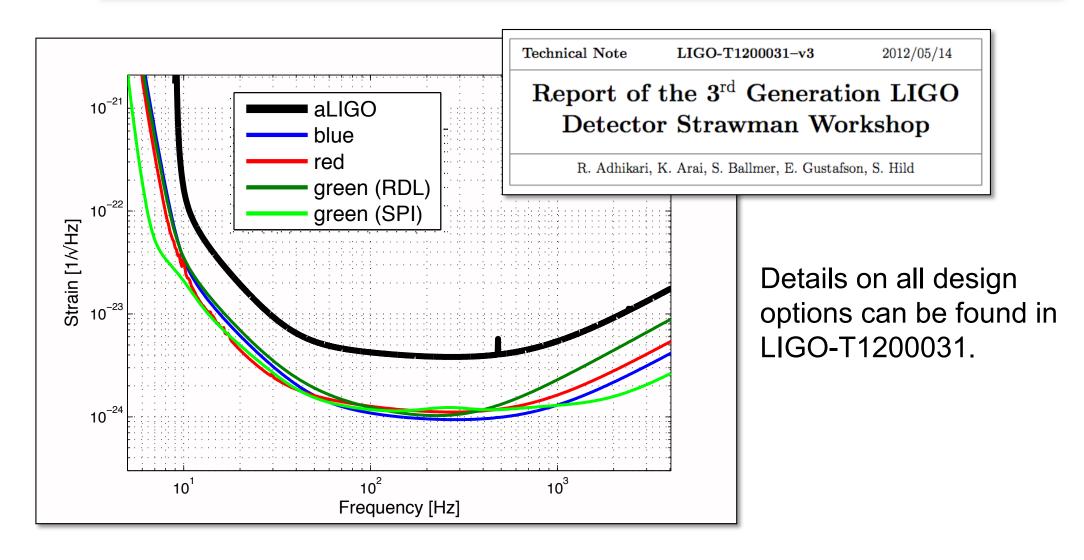
Blue Design (1)

- Blue design is much more radical than red design.
- ⇒ Based on cryogenic (120K) silicon test masses and suspensions to reduce thermal noise.
- Good properties of silicon:
 - Thermal expansion has a zerocrossing at 120K.
 - High thermal conductivity => smaller thermal gradients.


Winkler et al, Phys. Rev. A 44, 7022–7036 (1991)

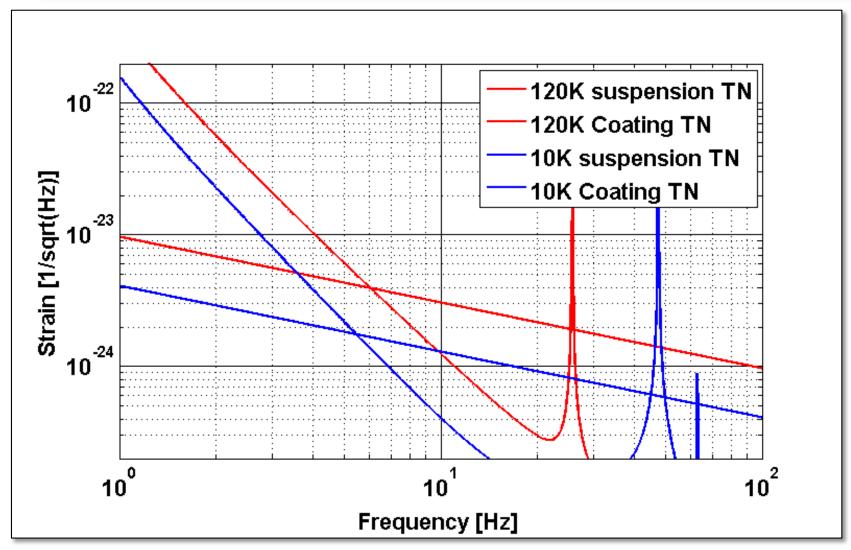
Plan to use 4 times higher optical power than aLIGO.


First Estimate: Materials vs max power


Blue Design (2)

- In contrast to the Einstein Telescope and KAGRA (both operating at 10-40K range) the cooling in the blue design will mainly be done via radiation (and not via conduction through the fibres).
- As a result the cryogenic implementation is simpler and higher optical powers can be possible.
- Lots of R&D required.
- Blue design not incremental.

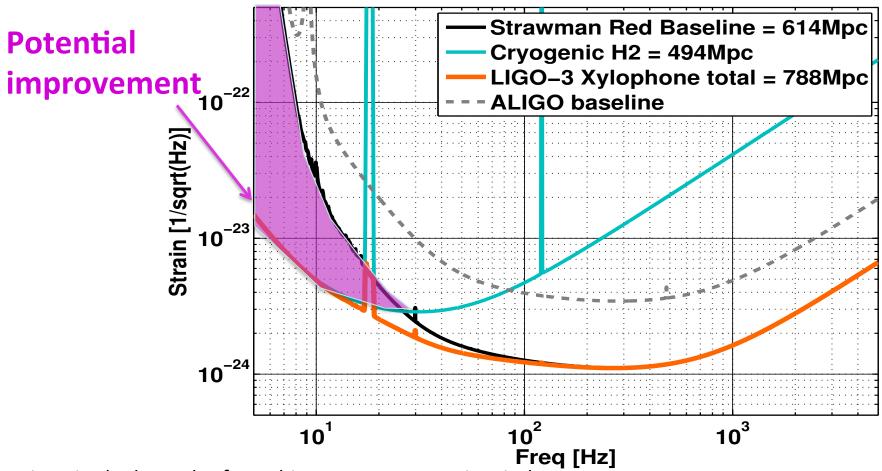
How do red, blue and green designs compare in sensitivity?


Contents

- Background / Introduction
- ⇒ A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- Example upgrade 2: Team Green design(s)
- **⇒** Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- What can we learn from all this?

The cooler the better the noise!

160kg silicon test masses. Minimal fibre


Xylophone concept

- Xylophone approach: Cover the full desired frequency range by building two different interferometers, one covering the low frequency range and one covering the high frequency range.
- Resolves the problem of noise sources scaling in opposite direction (e.g. shot noise versus radiation pressure noise).
- Resolves problem of high power laser beams on cryogenic test masses.
- Please note: It is already quite amazing that our detectors can span a detection band of 2 to 3 decades in frequency.
- ⇒ However, it seems likely that at some point we will find it easier (in terms of complexity) and cheaper (in terms of cost and time) to build two simpler interferometers (each optimised for the noise sources relevant in its frequency range) rather than one extremely complex instrument (optimised for 'everything').

The full xylophone

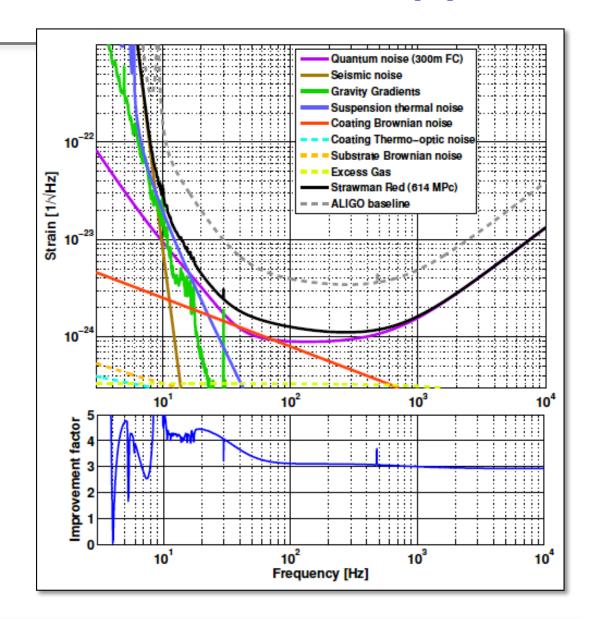
Please note: No GGN or seismic noise or any control noises are included in the LF detector noise budget !!

Numbers given in the legend refer to binary neutron star inspiral range. A lower cut-off frequency of 5Hz was chosen.

Xylophone discussion

- If gravity gradient noise and seismic noise can be mitigated, a cryogenic instrument accompanying a RT partner could make a significant low frequency sensitivity improvement
- Using a xylophone can allow simplifying the accompanying room temperature upgrade (for instance shorter suspensions, lower weight of test masses, shorter filter cavity etc)
- Going for a full xylophone can give all the benefits of a cryogenic, low-power interferometer to cover the low frequency range while AT THE SAME TIME give the full benefit of a not too complex and cost efficient high-power interferometer covering the high frequency end.
- Also gives us the possibility to learn cryogenics and prepare ourselves for the future.

Contents


- Background / Introduction
- A Zoo of technologies to reduce individual noise sources.
- Example upgrade 1: Team Red design
- Example upgrade 2: Team Green design(s)
- **⇒** Example upgrade 3: Team Blue design
- ⇒ Example upgrade 4: Team Red Xylophone
- What can we learn from all this?

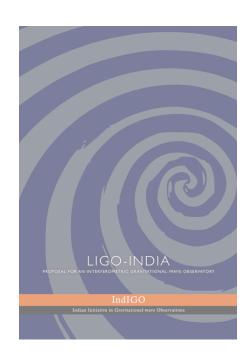
Increasing Effort, Cost, Ambition

What can we learn from this? (I)

- Advanced LIGO is far away from its facility limits.
- ⇒ The Team Red design would allow an incremental upgrade, improving the sensitivity broadband by a factor 3-4.
- ⇒ 'You can buy sensitivity at a rate of the order of about 10Mpc/\$1million'.

What can we learn from this? (II)

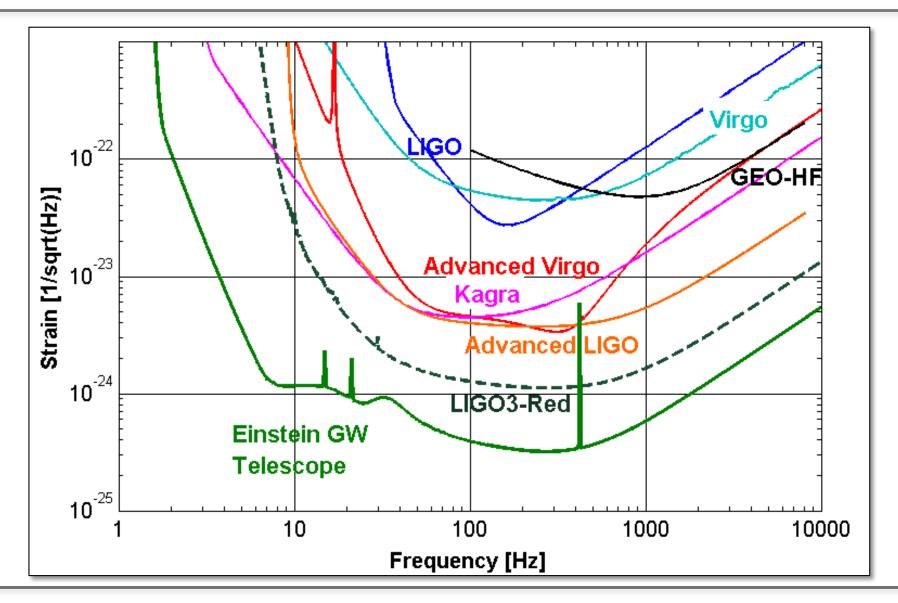
- ⇒ The developed designs vary strongly and cover a wide spectrum in terms of cost, technical readiness of the involved technologies, the required shut-down times etc.
- Designs have been extremely useful for defining what R&D is required to be carried out over the upcoming years.
- ⇒ In a few years, when required timelines and available budget are clearer as well as open R&D questions have been answered, the upgrade plans will be narrowed down to a single design.
- Key message for the moment: There will be significant sensitivity improvements possible after Advanced LIGO will have accomplished its mission!


R&D required for the different designs

 Red Metrology for 55cm mirrors Better coatings at 1064nm and RT Suspensions (160kg, 1.2m) 		 Green Metrology for ~1m mirrors Mirrors with insets Scattering?
	Freq-dependend SqueezingNewtonian noise subtraction	
 Silicon properties at 120K 500 W laser at 1550nm Infrastructure for cooling to 120K (scattering) Blue	Silicon suspensionsSilicon bondingAvailable bulk size	 Silicon properties at 10-40K Heat extraction Thermal shields Red Xylo

What can we learn from this for LIGO-India?

- Now could be a good time to start looking at what of these upgrades can be implemented into LIGO India right from the beginning.
- Potentially could save money if certain infrastructures are included already now.
- Need to be ultra low-risk!
- Potential example: Include frequency dependent squeezing.
 - Need to include vacuum tube for filter cavity
 - Satisfies ultra-low risk requirement => can easily just block the injection path to get back the baseline configuration.
- An other obvious examples? Newtonian noise reduction?



LIGO-3 sensitivity in context

