

crystalline suspensions

Eric Hennes

A.Bertolini, M.Doets, M. Jaspers, F. Schimmel, J. Geurtsen

ICRR: T. Sekiguchi, Univ. of Sannio: R. DeSalvo

GWADW, Elba 2013, May 24

bKagra test mass suspension Mirror and wires: both sapphire

To be addressed

- wire bonding
- wire tension equilibration
- vertical modes f_y= 100 Hz, f_{pitch}=23 Hz
 too high? (adVirgo: 10 times lower)
- pendulum dilution factor: 7.5
 too much thermal noise? (adLigo: >1000)
- wire profile

Investigated options (also valuable for ET)

- 1. Attach wire to mirror: suspension slots
- 2. Improve heat transfer & z-compliance: flat ribbon / segmented rod*
- 3. Increase vertical compliance with springs
 - Cantilever blade suspension
 - Silicon blade bending strength tests
 - Compressive beam suspension

*Non-uniform rod concept: Takanori Sekiguchi Elites f2f meeting, Tokyo, 2012/2/4

1. mirror-wire bonding concept

- Wire/rod with nail head attached
- Slot alcove machined in the mirror itself
- Contacting faces sufficiently aligned and flat
- Thin indium/gallium foil for thermal contact
- Purely compressive joint

Prototype sapphire slot:

- Made by CNC Mack (South-Germany)
- Ultra-sonically machined faces
- Face pairs aligned and flat σ_{y} = 0.8 μm

2. Flat Ribbon profile concept

- Mono-crystal grown in designed profile (Stepanov-EFG* method, tubes/ribbons up to 300 mm, 1-4 cm/hour)
- Low compliance in beam direction
- Polish flat sides → increase thermal conductivity (preventing diffusive reflection of phonons)
- 2 half nail heads, each 3 ultrasonically machined faces
- bonding to ribbon options: mono-crystalline braze by heat-pressing with sputtered microcrystals, or hydroxide catalysis bonding or?

Test ribbons 100 x 5x 0.8 mm

- Made by Impex (Germany)
- 5 grades/types of surface treatment: ground, thermo-, chemical (CMP)-, diamond-, inspection- polished)
- Roughness measured with profiler (@ Amolf Amsterdam): between 700 and 0.4 nm RMS
- Thermal conductivity to be measured in Jena (hopefully soon!)

Seed holder

Bonding nail heads to ribbon

3.1. Triangular cantilever

- Candidates for compliant vertical suspension
- Obtainable compliance depends on allowed stress level
- Modeling by FEA or numerically
- For instance silicon blades for bKAGRA (5.5 kg/wire):

3.2. Silicon blades bending test

BSc student project @ Nikhef

polished wafer samples

- From commercially available wafers
- Samples *L.w.t* = 50×5×0.4mm, 75×12×0.2 mm
- Hand-cut, machine-cut or DRIE* etched
- optionally sandpapered or KOH etched
- Microscopic/SEM edge inspection

Wafer machine-cut @ Amolf Amsterdam

ion-etched wafer, 0.4 mm (TU

Bending test measurement setup

Stress-free at clamps

- 1. Mount flat blade in device, free length L
- 2. Measure after each compression step:
 - $F_{\rm x}$ compressive force
 - clamp tilts Θ_{c}
 - mid blade height Уо
 - compression Δx

3. Until ...

Bending test analysis

• Analysis based on (half) beam torque equilibrium

$$EI\frac{d^2\theta}{ds^2} = F_x \sin\theta, \quad s = 0....\frac{L}{2}$$

$$\frac{dy}{ds} = \sin \theta, \quad \frac{dx}{ds} = \cos \theta$$

• With boundary conditions Q(0) = w(0) = w(1) = 0

$$\theta(0) = x(0) = y(\frac{L}{2}) = 0$$

- plus one of the measurements (or more, if E and/or F_x are considered uncertain): $y(0) = y_0, \quad x(\frac{L}{2}) = (L - \Delta x)/2, \quad \theta(\frac{L}{2}) = -\theta_c$
- Maximum stress estimations either directly or via model:

$$\sigma_m = \frac{y_0 F_x t}{2I} \qquad \qquad \sigma_m = \frac{1}{2} E t \frac{d\theta}{ds}(0)$$

Bending destructive test results (sofar..)

- (thin) flexures nicely cut along crystal axis can give up to 500 MPa strength (triangular blades not possible this way)
- DRIE-etching: allows for profiling, but strength limited to ~250 Mpa
- Hand-cut: large variation in strength
- Strong flexures can be selected
- To be done: serious edge polishing

Destructing 26 + more silicon blades				
	+ etched	DRIE-	Machine cut	
hand cut	edges (KOH)	etched	straight	inclined
max stress reached [Mpa] ±20				
270	197	220	484	122
540	189	350	502	179
170	200	250	567	239
150		250	569	
330	broken during	220	475	
290	sand papering	340	515	
222		280		
280 ± 120	195±5	270 ± 75	519 ± 40	180 ± 50

Compare : cut along crystal axis (left) or not (right)

Eric Hennes, GWADW Elba, May 24, 2013 NIKHEF

3.3. Compressive beam suspensions

- Ceramics: high compressive, low tensile strength
- Beams in compression can withstand larger curvature, because ...local stress = compressive offset (< 0) + local bending stress
- Moreover, compressive forces themselves can add-up to a soft spring (buckling)

(a) design optimization based on

2-step strategy:

pure compressive (straight) beams beams in compression (William's toggle) "Clamped" beam Beam in compression Lo α_1 VI α_0 L_x pivots W=2Mg(N.B, hypothetical, just for dimensioning)

(b) extend this to clamped/monolithic

Purely compressive beam suspension design

For beam with rectangular cross-section

t

Given:

М

f

t

- : mass load per beam
- L_0 : beam length
- *E* : Young modulus
- $\sigma_{\rm m}$: compressive stress
 - : required resonance frequency

Calculate:

- : beam thickness
- w : width
- α_0 : initial angle (or height y_0)
- α_1 : final angle
- (or height y_0) (or height y_1)

After some math... $\sin \alpha_0 = \sqrt{3}$

$$r\left[1 + \frac{kr}{6} + \left(\frac{5k^2}{72} - \frac{1}{2}\right)r^2 + O(r^3)\right]$$

$$\sin \alpha_1 = r \left[1 + \frac{kr}{2} + \frac{k^2 r^2}{8} + O(r^3) \right]$$

$$=L_0\sqrt{\frac{12}{\pi^2}\frac{\sigma_m}{E}}$$
 beam buckling condition

$$w = \frac{Mg}{\sin \alpha_1 t \sigma_m}$$
 with $r = \sqrt{\frac{\sigma_m}{E}}$, $k = \frac{Mg}{Ewt}$

Selected "seed" for next model

Including bending: Williams* toggle

For a given geometry ($\alpha \ll 1$, *L*, *EI*, *A=wt*) and vertical deflection $\delta = y - y_0$, the forces are:

$$P = \frac{AE}{L} \left(\delta \sin \alpha - \frac{6\delta^2}{10L}\right)$$
$$F = \frac{P}{L} \frac{\mu(\rho)}{1 - \mu(\rho)} \delta$$

$$W = 2(F + P\sin\alpha)$$

with
$$\mu(\rho) = \frac{\pi}{2}\sqrt{\rho} \cot \frac{\pi}{2}\sqrt{\rho}$$
, $A = wt$
 $\rho = P/P_E$, $P_E = \frac{\pi^2 EI}{L^2}$

$$\sigma_b(x) = \frac{Etk}{2P} (k\tau \cos kx - F \sin kx)$$

with
$$\tau = P_E \frac{\rho}{2(1 - \mu(\rho))} \delta$$

 * Williams, F.W., 1964. An approach to the non-linear behavior of the

 $k^2 = \frac{P}{FI}$

beam torque

"wave" number

Average (compressive) stress

 $\sigma_c(x) = \frac{P}{A}$

NIKHEF

A members of a rigid jointed plane framework with finite deflections. The Quarterly Journal of Mechanics and Applied Mathematics, **17**(4):451-469. Eric Hennes, GWADW Elba, May 24, 2013

Williams toggle, applied to bKAGRA

NIKHEF Eric Hennes, GWADW Elba, May 24, 2013

Williams toggle, model results (1)

- Dynamic behaviour of the models is almost the same
- Bending makes it just a bit stiffer
- Max stress not at beam end

Williams toggle, model results (2)

Summary

- In-mirror micron-accurate (USM-) machined sapphire suspension slots seem feasible
- sapphire grown ribbons (from Impex) have roughness down to 4 nm rms

The surface-dependence of their thermal conductivity will be tested in Jena

- Silicon cantilever blade suspension requires strength: 250 MPa for 10 Hz 500 MPa for 3 Hz
- Silicon Bending tests sofar (0.2-0.4 mm) give:
 270 (80) MPa DRIE-etched blades
 520 (40) MPa cut along crystal axis
- Compressive beam suspension was studied (Williams toggle)

For KAGRA 10 Hz suspension conceivable with tensile stress < 200 MPa

Backup

From Sekiguchi *Non-uniform rod concept: Takanori Sekiguchi Elites f2f meeting, Tokyo, 2012/2/4

- There is a trade-off of using non-uniform fibers :
 - The suspension thermal noise at low frequencies (<50 Hz) decreases, by the "dissipation dilution" effect.
 - However, the suspension thermal noise at high frequencies (~100 Hz) increases and the resonant frequencies of the violin modes get lower.

Resonances of the violin modes and vertical mode still remain at ~100 Hz.

