Underground matter-wave interferometer based gravitation antenna

P. Bouyer

Laboratoire Photonique, Numérique et Nanoscience, Bordeaux, France

on behalf of the MIGA partners

Using atom Interferometry ...

Using atom Interferometry ...

... to detect gravitational waves

Gravity waves will distort space time

example of a linearly polarized GW

Gravity waves will distort space time

example of a linearly polarized GW

the time light will take to travel between 2 points anchored to the reference frame will be modulated

Gravity waves will distort space time

example of a linearly polarized GW

the time light will take to travel between 2 points anchored to the reference frame will be modulated

strain h (modulation amplitude) is very small on the earth ($\approx 10^{-20}$)

frequency arOmega of the gravitational wave spans over a large range (mHz to kHz)

$L/2[1+h.sin(\Omega t)]$

$L/2[1+h.sin(\Omega t)]$

$L/2[1+h.sin(\Omega t)]$

Laser interferometers can detect GW for Ω > few Hz.

$L/2[1+h.sin(\Omega t)]$

Laser interferometers can detect GW for Ω > few Hz.

Laser readout of distance between 2 proof masses in free fall (2 mirrors).

Mirrors must be «isolated» from ground by high performance suspensions

2 arms (Michelson type) interferometer.

L.h.sin(Ω t)

Laser interferometers can detect GW for Ω > few Hz.

Laser readout of distance between 2 proof masses in free fall (2 mirrors).

Mirrors must be «isolated» from ground by high performance suspensions

2 arms (Michelson type) interferometer.

Low frequency sensitivity limited to few Hz because of seismic noise.

Gravity wave detection with matter wave interferometer

Correlated measurement by coupling atoms and cavity mirrors

Correlated measurement by coupling atoms and cavity mirrors

$$\Delta \phi = kaT^2 \sim khL\omega^2 \sin(\omega t)T^2$$

The sensitivity function is a natural tool to characterize the influence of the noise of the environment on the the interferometric phase.

Interferometer transfer function (acts as a filter)

- Introduce the transfer function $H(\omega) = |\omega G(\omega)|$

$$\sigma_{\Phi}^2 = \int_0^{+\infty} |\omega G(\omega)|^2 S_{\phi}(\omega) \frac{d\omega}{2\pi}$$

Can compute sensitivity function for all contributions

One example of correlated measurement

Laser cavity read-out signal : ~ $h.L.sin(\Omega t)$

Atom interferometer read-out signal : ~ $k.h.L.\Omega^2.sin(\Omega t)$

With atom interferometers, it is possible to extend the sensitivity to sub Hz frequencies.

How to readout GW signal

Laser locked to cavity and used for light pulse atom interferometry

How to readout GW signal

Laser locked to cavity and used for light pulse atom interferometry

Effect of gravitational wave : L.h.sin(Ω t) Laser cavity read-out signal : $\partial(k^{-1}) \sim L.h.sin(\Omega t)$ Atom interferometer read-out signal : ~ 0

Effect of seismic noise : 0

Laser cavity read-out signal : $\partial(k^{-1}) \sim A.sin(\Omega t)$ Atom interferometer read-out signal : ~ $A.sin(\Omega t)$

MIGA-study: current state-of development technology for compact sensors .3 second interrogation time, L = 100 m, 4 recoil light pulse splitter, atomic shot noise limited phase shift sensitivity of 100 µrad

MIGA: shortterm enhanced design performances .5 second interrogation time, L=1 km, 100 recoil.

MIGA-study: current state-of development technology for compact sensors .3 second interrogation time, L = 100 m, 4 recoil light pulse splitter, atomic shot noise limited phase shift sensitivity of 100 µrad

MIGA: shortterm enhanced design performances .5 second interrogation time, L=1 km, 100 recoil.

MIGA-study: current state-of development technology for compact sensors .3 second interrogation time, L = 100 m, 4 recoil light pulse splitter, atomic shot noise limited phase shift sensitivity of 100 µrad

MIGA: shortterm enhanced design performances .5 second interrogation time, L=1 km, 100 recoil.

MIGA-study: current state-of development technology for compact sensors .3 second interrogation time, L = 100 m, 4 recoil light pulse splitter, atomic shot noise limited phase shift sensitivity of 100 μ rad

MIGA: shortterm enhanced design performances .5 second interrogation time, L=1 km, 100 recoil.

Funded instrument EQUIPEX 2011 : France First "small" version : 400-600 m

15 institutes - 3 compagnies

Laboratoire(s)/	Numéro(s) d'unité/ Unit number	Tutelle(s)/Research
Laboratoire Photonique.	UMR 5298	Institut d'Optique
Numérique et Nanosciences -		CNRS
LP2N		Université Bordeaux 1
Laboratoire Souterrain Bas Bruit -	UMS xxxx, starting on January 1st,	Université de Nice Sophia
LSBB	2012	Antipolis
		Université d'Avignon et des
		Pays de Vaucluse
Sustèmes de Référence Temps	1000 8610	Chesquatoire de Darie
Espace - SYRTE	0000	CNRS
Lopace Critic		UPMC
		LNE
Astrophysique Relativiste	UMR 6162	Observatoire de la Côte
Théories Expériences Métrologie		d'Azur
Instrumentation Signaux -		CNRS
ARTEMIS		Université de Nice Sophia
Centre Lasers Intenses et	LIMP 5107	Ampolis
Applications - CFLIA	onine offer	CNRS
Applications - GEEIN		CEA
Laboratoire Kastler-Brossel -	UMR 8552	ENS
LKB		UPMC
		Collège de France
		CNRS
Astroparticule et Cosmologie -	UMR 7164	Université Paris Diderot
APC		CNRS Chase state de Derie
		CEA
GEOAZUR	UMR 6526	Université de Nice Sophia
		Antipolis
		CNRS
		Observatoire de la Côte
	E4 4834	d'Azur
Geologie des Systemes et des Réservoirs Carbonatés - CSRC	EA 4234	Universite de Provence
Environmement Mikiterranien et	UMB 1114	Université d'Avignon et des
Modélisation des Agro-	Sum Child	Pays de Vaucluse
Hydrosystèmes - EMMAH		INRA
Institut Pluridisciplinaire de	FR 2952	Université de Pau et des
Recherche Appliquée dans le		Pays de l'Adour
domaine du génie pétrolier -		CNRS
IPRA	1840 0140	Link series for the
IDE3	UMPX 0140	CNRS
Laboratoire d'Electronique	UMR 6071	Université de Nice Sophia
Antennes et Télécommunication -		Antipolis
LEAT		CNRS
Geosciences Montpellier	UMR 5243	Université Montpellier 2 CNRS
Institut de Physique du Glode de Strasbourg - IPGS	UMR 7516	Université Louis Pasteur CNRS
Entreprise(s) / company	Secteur(s) d'activité/activity field	Effectif/ Staff size
ALPHANOV	Laser development - industrial	20
MUQUANS	paromite development	4
modulina	interferometry	-
SOLETANCHE BACHY	Digging and construction of tunnels of	50-80
TUNNELS	large section by all type of processes	

Gravity wave detection with matter wave interferom

EQUIPEX Organization

3 Science centers in France involved in the instrument development

Gravity wave detection with matter wave interferometers

INSTITUT d'OPTIQUE

GRADUATE SCHOOL

Multidisciplinary organization

Large network of users, from fundamental physics to geophysics

Gravity wave detection with matter wave interferometers

MIGA-study: current state-of development technology for compact sensors .3 second interrogation time, L = 100 m, 4 recoil light pulse splitter, atomic shot noise limited phase shift sensitivity of 100 µrad

MIGA: shortterm enhanced design performances .5 second interrogation time, L=1 km, 100 recoil.

Gravity monitoring for underground survey

Gravity wave detection with matter wave interferometers

Gravity wave detection with matter wave interferomet

Example of geophys. application

Hydrology (thesis T. Jacob, geoscience Montpellier)

INSTI1 d'OPTIC

MIGA sensitivity to gradients MIGA sensitivity to strain MIGA sensitivity to gravity Atom number per interferometer

Atom temperature (rms velocity) Cooling laser power per interferometer Cavity finesse Beam waist in cavity Cavity laser power Cavity laser frequency noise

Vibration isolation frequency range Vibration isolation level Advanced MIGA sensitivity to strain $10^{-13} \text{ s}^{-2} \text{ at } 2 \text{ Hz}$ $10^{-14} \text{ dB}/\sqrt{\text{Hz}} \text{ at } 2 \text{ Hz}$ $10^{-10} \text{ g at } 2 \text{ Hz}$ $10^{6} \text{ atom per atomic source}$ at 100 nK 100 nK (1 mm/s) 1 Wattmin. 100 min. 300 mm 50 WattsPSD < $10^{-3} \text{ Hz}^2/\text{Hz}$ between 10 Hz and 100 kHz

> 1 Hz < 10⁻² at 1Hz and above. 10⁻¹⁶ dB/ \sqrt{Hz} at 1 Hz (improved detection) 10⁻²¹ dB/ \sqrt{Hz} at .1 Hz (improved detection, levitation methods) One horizontal galleries with 300 m length

- Possibility of second orthogonal and third vertical gallery
- MIGA arms could be «connected» via ultra-high stability laser link

Thank you

you are welcome to joint us in Bordeaux

