

Verification of cooling time reduction of interferometric cryogenic gravitational wave detectors using high emissivity coating

ICRR, Univ. of Tokyo, KEK^A

Yusuke SAKAKIBARA N. Kimura^A, T. Suzuki^A, K. Yamamoto, D. Chen, S. Koike^A, C. Tokoku, T. Uchiyama, and K. Kuroda

2013.5.24 GWADW 2013 (Elba, Italy)

- Test masses is surrounded by double radiation shields
- Four cryocoolers per one mirror
 - Two cool inner shield (~400 kg)
 - Two cool bar to masses (~300 kg)
- It takes 2 months to cool down mirror
- It is necessary to reduce cooling time
- How to reduce cooling time
 - Gas cooling
 - » Difficulty: mechanism to close and open holes of shield
 - Heat switch
 - » Difficulty: mechanism to contact and detach payloads
 - Increase radiation
 - » Slower but safer
 - » Adopted by KAGRA

Contents

- Calculation of KAGRA cooling time
 - High emissivity coating
 (Diamond Like Carbon (DLC)
 coating) can reduce it to 40 days
- Experiment to verify
 - Calculation model of radiation
 - Effect of high emissivity coating
 - Small-scale experiment
 - Experiments in KAGRA cryostats
- Goal of cooling time reduction

Cooling time calculation of KAGRA

Cooling time calculation of KAGRA

Experiment

Experiment with small-scale apparatus

- Experimental test of calculation model of radiation and effect of high emissivity coating
 - Inner sphere (copper) is suspended inside outer sphere (aluminum)

Nylon wire

7

- Nylon wire: thermal conduction negligible
- Outer sphere is kept at 77 K using liquid nitrogen
- Cooling time is examined with and without coating

Measured samples

Results (inner sphere: center)

• Fastest: both inner and outer spheres are coated

Models of heat transfer via radiation

- Gray body model (diffusive reflection)
 - Surface reflects radiation to all angle
 - Heat transfer is independent of position of inner sphere

- Regular reflection model
 - Surface reflects radiation to the same angle as incident angle
 - Heat transfer depends on position of inner sphere

Some rays from inner sphere are reflected by outer sphere more than twice.

Results (inner sphere: shifted from center)

Inner sphere shifted from center cools faster

Shift 5cm

Inner sphere: center

Comparison with calculation models

- Results are consistent with regular reflection model
 - Surface can be regarded as flat planes at wavelength of radiation (~10 um)

3 Inner: DLC Outer: DLC

Emissivity DLC: 0.3*(T/300K)

Experiments with KAGRA cryostats

Experiments with KAGRA cryostats

Cryostat No.2 Aluminum sphere Coated with DLC

- Manufacturing KAGRA cryostats completed
- Cooling test of cryostats conducted
- Aluminum sphere is suspended inside cryostats
 - Kevlar wires (aramide fibers): thermal conduction negligible
- Radiation was examined to verify scaling law

Sphere made by S.Koike, R.Kobayashi(KEK)

Results

- Temperature of sphere calculated from temperature of inner shield
- Diffusive and regular reflection yield same results (not so symmetric shield)

Consistent with calculation

Cryostat No.2 Aluminum sphere Coated with DLC

Emissivity DLC: 0.4*(T/300K)

Experiment with KAGRA cryostats

- 1/2 size dummy payload was suspended inside cryostat No.3
 - SUS wires: thermal conduction negligible
- Thermal radiation was examined

(without any heat links)

Cooling from room temperature

Payloads designed and made by R.Kobayashi, S.Koike (KEK)

Results

- Temperature of payloads calculated from temperature of inner shield
- Diffusive and regular reflection yield same results (not so symmetric shield)

Consistent with calculation

Emissivity Sapphire: 0.5 Platform: 0.3*(T/300K) IM: 0.4*(T/300K)

Goal of cooling time reduction

- Requirement of duty factor of KAGRA: 80%
- One maintenance 70 days

 Cooling down 40 days
 Heating up (using nitrogen gas) 10 days
 Other maintenance >20 days

 Short time maintenance 40 days 10 days
- Unlocking of interferometer
- Cooling down & heating up < once in two years
- Another method to reduce cooling time is necessary

M.Punturo and K.Somiya, Int. J. Mod. Phys. D 22, 1330010 (2013)

- Summary
 - Cooling time of KAGRA is calculated
 - Calculation model predicts cooing time correctly
 - Small-scale experiment verified
 - Calculation model
 - Effect of high emissivity coating on reduction of cooling time
 - Experiment with KAGRA cryostats
 - Consistent with calculation (emissivity of sapphire: 0.5)
- Future work
 - R&D of another method to reduce cooling time