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General Relativity  
(              ) 

•  GR has survived all tests so far… 
     [C. Will, gr-qc/0510072; S. Turyshev, M. Shao, K. Nordtvedt, gr-qc/0601035] 
     [O.B., J. Páramos, S. Turyshev, gr-qc/0602016] 
 
•  Parametrized Post-Newtonian Formalism (U-gravitational potential,      velocity) 

 
 
•  Local (solar system) tests 

Mercury´s perihelion shift:                                                                      [Shapiro 1990] 

Lunar Laser Ranging:                                              [Williams, Turyshev, Boggs 2004] 

LBLI light deflection:                                                                     [Eubanks et al. 1997] 

Cassini Experiment:                                                          [Bertotti, Iess, Tortora 2003] 
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Cassini-Huygens Radiometric Experiment 

B. Bertotti, L. Iess and P. Tortora, Nature 425 (2003) 374 
 



Summary of the General Relativity Tests 

   



                   Partially confirmed predictions: 
 
             Gravitational waves – PSR B1913+16 
                            (LIGO, …, LISA) 
  
 
                        Lense-Thirring Effect  
                           (Gravity Probe-B) 
                     19% Accuracy - May 2011 
 
      BepiColombo Mission to Mercury (ESA/ISAS) 
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•  Outstanding challenges (GR + Quantum Field Theory) 
–  Singularity Problem 
–  Cosmological Constant Problem 
–  Underlying particle physics theory for Inflation  
 

•  Theory provides in the context of the Big Bang model an impressive 
picture of the history of the Universe 
–  Nucleosynthesis               (             ,                                    ) 
–  Cosmic Microwave Background Radiation 
–  Large Scale Structure 
–  Gravitational lensing 
–  … 

•  Required entities (missing links): 
–  Dark Matter 
–  Dark Energy 
 
 

Cosmological Tests of General Relativity 

4<νN 001.0023.02 ±=Ω hB



 
•   Evidence: 
       
      Flatness of the rotation curve of galaxies 
      Large scale structure  
      Gravitational lensing  
      N-body simulations and comparison with observations 
      Merging galaxy cluster 1E 0657-56 
    Massive Clusters Collision Cl 0024+17 
      Dark core of the cluster A520  
   
•  Cold Dark Matter (CDM) Model  
 

  Weakly interacting non-relativistic massive particle at decoupling 
 
 
•  Candidates:  
 
     Neutralinos (SUSY WIMPS), axions, scalar fields, self-interacting scalar 

particles (adamastor particle), etc. 
 
     
 
                                 
 

Dark Matter 



Merging Galaxy Cluster 1E 0657-56  
[Clowe et al., astro-ph/0608407] 

“Bullet” Cluster 



Massive Clusters Collision Cl 0024+17  
[Jee et al., astro-ph/0705.2171] 

Ring-like dark matter structure 



Dark core of the Abell 520  
[Mahdavi et al., 0706.3048(astro-ph)] 

Collisional dark matter ?  



[O.B., Rosenfeld 2008]  

Self-Interacting Dark Matter 

Higgs decay width 

 [Bento, O.B., Rosenfeld, Teodoro 2000] 
                  [Silveira, Zee 1988]  
          [Bento, O.B., Rosenfeld 2001] 

[Spergel, Steinhardt 2000] 
            

Model: 

Motivation: “cuspy core” problem  
 

Unified model for dark energy – dark matter:  

 

22' Hg Φ



  
[Bento, O.B., Rosenfeld 2001] 



 
•   Evidence:  
      Dimming of type Ia Supernovae with z > 0.35  
      Accelerated expansion (negative deceleration parameter): 
                        [Perlmutter et al. 1998; Riess et al. 1998, …]  
•    Homogeneous and isotropic expanding geometry 
      Driven by the vacuum energy density ΩΛ and matter density ΩM  
        
       Equation of state:   

•   Friedmann and Raychaudhuri equations imply:  
 

     q0 < 0 suggests an invisible smooth energy distribution 
 
•   Candidates:  
     Cosmological constant, quintessence, more complex equations of state, 

etc. 
 
 
 

Dark Energy 
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   Supernova Legacy Survey (SNLS) 

[Astier et al., astro-ph/0510447]  



 D.N. Spergel et al., astro-ph/0603449 

WMAP 3 Year Results                 



  

      WMAP 3 Year Results 

WMAP 3 + SNLS: 

ρ
ω

p
=

D.N. Spergel et al., astro-ph/0603449 



  

      WMAP 5 Year Results 
E. Komatsu et al., 0803.0547 [astro-ph] 

WMAP 5-year Cosmological Interpretation 3

TABLE 1
Summary of the cosmological parameters of ΛCDM model and the corresponding 68% intervals

Class Parameter WMAP 5-year MLa WMAP+BAO+SN ML WMAP 5-year Meanb WMAP+BAO+SN Mean

Primary 100Ωbh2 2.268 2.263 2.273 ± 0.062 2.265 ± 0.059
Ωch2 0.1081 0.1136 0.1099 ± 0.0062 0.1143 ± 0.0034
ΩΛ 0.751 0.724 0.742 ± 0.030 0.721 ± 0.015
ns 0.961 0.961 0.963+0.014

−0.015 0.960+0.014
−0.013

τ 0.089 0.080 0.087 ± 0.017 0.084 ± 0.016
∆2

R
(k0

e) 2.41 × 10−9 2.42 × 10−9 (2.41 ± 0.11) × 10−9 (2.457+0.092
−0.093) × 10−9

Derived σ8 0.787 0.811 0.796 ± 0.036 0.817 ± 0.026
H0 72.4 km/s/Mpc 70.3 km/s/Mpc 71.9+2.6

−2.7 km/s/Mpc 70.1 ± 1.3 km/s/Mpc
Ωb 0.0432 0.0458 0.0441 ± 0.0030 0.0462 ± 0.0015
Ωc 0.206 0.230 0.214 ± 0.027 0.233 ± 0.013
Ωmh2 0.1308 0.1363 0.1326 ± 0.0063 0.1369 ± 0.0037
zreion

f 11.2 10.5 11.0 ± 1.4 10.8 ± 1.4
t0g 13.69 Gyr 13.72 Gyr 13.69 ± 0.13 Gyr 13.73 ± 0.12 Gyr

aDunkley et al. (2008). “ML” refers to the Maximum Likelihood parameters
bDunkley et al. (2008). “Mean” refers to the mean of the posterior distribution of each parameter
cDunkley et al. (2008). “ML” refers to the Maximum Likelihood parameters
dDunkley et al. (2008). “Mean” refers to the mean of the posterior distribution of each parameter
ek0 = 0.002 Mpc−1. ∆2

R
(k) = k3PR(k)/(2π2) (Eq. [15])

f“Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized state at
zreion
gThe present-day age of the universe

analysis of Gaussianity tests and the power spectrum,
respectively.

The method for measuring the TT and TE spectra at
higher multipoles, i.e., l ≥ 33 for TT and l ≥ 24 for TE,
is also the same as we used for the 3-year data (Hinshaw
et al. 2007). As for the estimation of the cosmological
parameters from these spectra, we now include the weak
gravitational lensing effect of CMB due to the intervening
matter fluctuations (see Lewis & Challinor 2006, for a
review), which was not included in the 3-year analysis.
We continue to marginalize over a potential contribution
from the Sunyaev–Zel’dovich effect (SZE), using exactly
the same template SZE power spectrum that we used for
the 3-year analysis: CSZE

l from Komatsu & Seljak (2002)
with Ωm = 0.26, Ωb = 0.044, h = 0.72, ns = 0.97, and
σ8 = 0.80 (see also § 2.1 of Spergel et al. 2007). We
continue to use the V and W band data for estimating
the high-l temperature power spectrum, and the Q and
V band data for the high-l polarization power spectra.

We have improved our treatment of the temperature
and polarization power spectra at lower multipoles, as
described below.

Low-l temperature – We use the Gibbs sampling tech-
nique and the Blackwell-Rao (BR) estimator to evalu-
ate the likelihood of the temperature power spectrum at
l ≤ 32 (Wandelt et al. 2004; Eriksen et al. 2007b). For
the 3-year analysis we used the resolution 4 Internal Lin-
ear Combination (ILC) temperature map (Nside = 16)
with a Gaussian smoothing of 9.183◦ (FWHM). Since
the ILC map has an intrinsic Gaussian smoothing of 1◦,
we have added an extra smoothing of 9.1285◦. We then
evaluated the likelihood directly in the pixel space for a
given Cl. For the 5-year analysis we use a higher res-
olution map, the resolution 5 ILC map (Nside = 32)
with a smaller Gaussian smoothing of 5◦ (FWHM). The
potential foreground leakage due to smoothing is there-
fore reduced. The BR estimator has an advantage of
being much faster to compute, which is why we have
adopted the Gibbs sampling and the BR estimator for
the 5-year data release. We have confirmed that both

the resolution 4 pixel-based likelihood and the resolu-
tion 5 Gibbs-based likelihood yield consistent results (see
Dunkley et al. 2008, for details). Both options are made
publicly available in the released likelihood code.

Low-l polarization – While we continue to use the direct
evaluation of the likelihood of polarization power spec-
tra in pixel space from coadded resolution 3 (Nside = 8)
polarization maps (Stokes Q and U maps), we now add
the Ka band data to the coadded maps; we used only Q
and V band data for the 3-year analysis. We believe that
we understand the polarized foreground emission (domi-
nated by synchrotron, traced well by the K-band data) in
the Ka band data well enough to justify the inclusion of
the Ka band (Gold et al. 2008). This, with 2 years more
integration, has led to a significant reduction of the noise
power spectra (averaged over l = 2 − 7) in the polariza-
tion EE and BB power spectra by a factor of as much
as 2.3 compared to the 3-year analysis. As a result, the
EE power spectrum averaged over l = 2 − 7 exceeds the
noise by a factor of 10, i.e., our measurement of the EE
power spectrum at l = 2 − 7 is now limited by cosmic
variance and the possibility of residual foreground emis-
sion and/or systematic errors18, rather than by noise. In
addition, we have added a capability of computing the
likelihood of TB and EB power spectra to the released
likelihood code. This allows us to test models in which
non-zero TB and EB correlations can be generated. We
discuss this further in § 4.

We continue to use the Markov Chain Monte Carlo
(MCMC) technique to explore the posterior distribution
of cosmological parameters given the measured temper-
ature and polarization power spectra. For details on the
implementation and convergence criteria, see Dunkley
et al. (2008).

2.2. External data sets: Hubble constant, luminosity
and angular diameter distances

18 For our limits on the residual polarized foreground contami-
nation, see Dunkley et al. (2008).



  



 
 

                                              Dark Energy -- Dark Matter 
 

“Quintessential Inflation” 
[Peebles, Vilenkin 99; Dimopoulos, Valle 02; Rosenfeld, Frieman 05, O.B., Duvvuri 06, …] 

 
 
 
 
 
 
 
 
 
 
 
 
 

Dark Energy – Dark Matter interaction 
[Amendola 2000, ..., O.B., Gil Pedro, Le Delliou 2007] 

 
Dark Energy – Dark Matter Unification 

[Kamenschik, Moschella, Pasquier 2001]  
[Bilic, Tupper, Viollier 2002; Bento, O.B., Sen 2002] 

[O.B., Rosenfeld 2008] 

Λ 

Inflation Dynamics 

DM 

DE 



Generalized Chaplygin gas model 

Generalized Chaplygin gas 

 

          : Chaplygin gas 

 

Dust 

 

          : stiff  matter 

 

De Sitter 

•  Unified model for Dark Energy and Dark Matter 

Generalized d-brane 

 

          : d-brane 

                                 [Bento, O.B., Sen 2002] 



Dark Energy - Dark Matter Unification: 
Generalized Chaplygin Gas Model 

 
 
 

–   CMBR Constraints              [Bento, O. B., Sen 2003, 2004; Amendola et al. 2004, Barreiro, O.B., Torres 2008] 

–   SNe Ia                                                            [O. B., Sen, Sen, Silva 2004; Bento, O.B., Santos, Sen 2005] 

–   Gravitational Lensing                                                                                                            [Silva, O. B. 2003] 

–  Structure Formation * 

 [Sandvik, Tegmark, Zaldarriaga, Waga 2004; Bento, O. B., Sen 2004; Avelino et al. 2004; Bilic, Tupper, Viollier 2005; …] 

–  Gamma-ray bursts                                                             [O. B., Silva 2006, Barreiro, O.B., Torres 2010] 

–  Cosmic topology                                                                                   [Bento, O. B., Rebouças, Silva 2006] 

–  Inflation                                                                                                                    [O.B., Duvvuri 2006] 

–  Coupling with electromagnetic coupling                                             [Bento, O.B., Torres 2007] 

–  Coupling with neutrinos                                                             [Bernardini, O.B. 2007, 2008, 2010] 

Background tests:  
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Structure formation and BAO: 2.0≤α



Large Dark Energy-Matter Surveys 

    

Supernovae     Standard Candles 
                          Luminosity Distance 

Cosmic Shear  Evolution of DM perts.  

Baryon Acoustic Oscillations   
                               Standard ruler 
                               Angular diameter distance 

Euclid 



Dark Matter  
 

 
 
 
  
   

Modified Newtonian Dynamics (MOND) 
   [Milgrom 1983, Bekenstein, Milgrom 1984, ..., Bekenstein 2004] 
 
 

New f(R) modified theory of gravity 
[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016 ] 
 

 •  Model: 

fi(R) – arbitrary functions of R           (                        ) 

•  Energy-momentum tensor of matter is not necessarily conserved: 

•  Motion is non-geodesic: 

•  For a perfect fluid: 

dR
RdfF i

i
)(

=



Dark Matter  
 

 
 
 
  
   

Modified Newtonian Dynamics (MOND) 
[Milgrom 1983, Bekenstein, Milgrom 1984, ..., Bekenstein 2004] 
 
 

 Motivation: Flatness Rotation Curve of Galaxies 
 
 
 
 
 
 
a0 ≈ 1.2 × 10-10 m/s2 - universal acceleration 
 
Tully-Fisher Law:       as 
 
TeVeS2 version: F-function problem 
 
 
 
   



MOND 

Tensor-Vector-Scalar field theory, S = Sg + Ss + Sv + Sm: 

 

 

 

 

 

 

 

Conformal transformation to the physical metric:      



Consistency 

•  PPN:                                   (see however O.B., Páramos 2006) 

             i) (Potentially) compatible  
                        [Skordis, Mota, Ferreira, Boehm 2005] 

•  CMBR 

                   ii) Problem with the third peak  
                        [Slosar, Melchiorri, Silk 2005] 
 
 
•  Gravitational lensing – great potential for testing 
                        [Zhao, Bacon, Taylor, Horne 2005] 
 
 

2102×≅Λ

MOND

CDM

P
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Can MOND take a bullet ?  

•  Dark halo made of neutrinos:              
•  Not quite !                    [Takahashi, Chiba, 2007] 

Neutrino oscillations:  
 
Tremaine-Gunn bound:  
 
Core density (Hernquist profile): 
 
 
 
 
A1689:  

[Angus, Shan, Zhao, Famaey 2006] 
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10 CHAPTER 3. F (R) THEORIES WITH NON-MINIMAL CURVATURE-MATTER COUPLING

Since the only di⇥erence between actions (2.2) and (3.1) is in the matter term, it is obvious that

the additional modification in the field equations will came from the variation of this term. Thus,

considering the variation of this term and using the results from Section 2.1 one obtains,
⌥ ⇧

1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ�

⌃
�gµ�⇥�gd4x =

⌥ ⇧
�f2(R)
�gµ�

Lm + f2(R)
1⇥
�g

�(
⇥
�gLm)
�gµ�

⌃
�gµ�⇥�gd4x ,

(3.4)

=
⌥ ⇧

Lmf �
2(R)Rµ� ��µ�(Lmf �

2(R))� 1
2
f2(R)Tµ�

⌃
�gµ�⇥�gd4x .

(3.5)

Hence, the field equations obtained from action (3.1) are given by

(f �
1 + 2Lmf �

2)Rµ� �
1
2
f1gµ� ��µ�(f �

1 + 2Lmf �
2) = f2Tµ� . (3.6)

Making explicit the Einstein tensor, Gµ� , one rewrites the field equations and gets

Gµ� =
f2

f �
1 + 2f �

2Lm

�
T̂µ� + Tµ�

⇥
, (3.7)

where the e⇥ective energy-momentum tensor T̂µ� has been defined as

T̂µ� =
1
2

⇤
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⌅
gµ� +

1
f2

�µ� (f �
1 + 2Lmf �

2) . (3.8)

From Eq. (3.7) one can define an e⇥ective coupling

k̂ =
f2

f �
1 + 2Lmf �

2

, (3.9)

and therefore the field equations can be written in a more familiar form,

Gµ� = k̂
�
T̂µ� + Tµ�

⇥
. (3.10)

Thus, in order to keep gravity attractive, k̂ has to be positive from which follows the additional

condition
f2

f �
1 + 2Lmf �

2

> 0 . (3.11)

As expected, setting f1(R) = R and f2(R) = 1 one recovers Einstein’s theory.

The e⇥ective energy-momentum tensor defined by Eq. (3.8) can be written in the form of a perfect

fluid,

Tµ� = (⇥ + p)uµu� � pgµ� , (3.12)

if one defines an e⇥ective energy density and an e⇥ective pressure. However, given the presence of

the higher order derivatives in Eq. (3.8), in order to proceed in this way it is necessary to specify

the metric of the space-time manifold of interest. Since one is interested in cosmological applications,

the Robertson-Walker (RW) metric is a natural choice. Hence, in what follows, one considers the

homogeneous and isotropic flat RW metric with the signature (+,�,�,�),

ds2 = dt2 � a2(t)ds2
3 , (3.13)
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where ds2
3 contains the spacial part of the metric and a(t) is the scale factor.

Using this metric the higher order derivative term is given by

⇥µ⇥h(R,Lm) = (⌅µ⌅⇥ � gµ⇥�)h(R,Lm)

= (⇧µ⇧⇥ � gµ⇥⇧0⇧0)h� (�0
µ⇥ + gµ⇥3H)⇧0h (3.14)

where h(R,Lm) is a generic function of R and Lm, H = ȧ/a is the Hubble expansion parameter and

�0
µ⇥ = aȧ �µ⇥ (with µ, ⇤ ⇤= 0) is the a⌅ne connection. Thus, the e⇤ective energy density is given by

⌅̂ =
1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
� 3H

f ��
1 + 2Lmf ��

2

f2
Ṙ (3.15)

while the e⇤ective pressure is given by

p̂ = �1
2

�
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⇥
+ (R̈ + 2HṘ)

f ��
1 + 2Lmf ��

2

f2
+

f ���
1 + 2Lmf ���

2

f2
Ṙ2 , (3.16)

where the dot refers to derivative with respect to time.

The field equations (3.10) along with the definitions of ⌅̂ and p̂ will be useful for deriving the various

energy conditions in Section 3.3.

The non-minimal curvature-matter coupling brings new intriguing features to the modified theories

of gravity. One expects energy to be exchanged between geometry and matter fields in a non-trivial

way. In fact, taking account into the covariant derivative of the field equations (3.6), the Bianchi

identities and the relationship1

⌅µ⇥µ⇥f �
i(R) = (�⌅⇥ �⌅⇥�)f �

i(R) = Rµ⇥⌅µf �
i(R) , (3.17)

one obtains [10]

⌅µTµ⇥ =
f �
2

f2
[gµ⇥Lm � Tµ⇥ ]⌅µR . (3.18)

Thus, one verifies that the energy-momentum tensor is not covariantly conserved. Furthermore,

inserting the energy-momentum tensor of a perfect fluid (Eq. (3.12)) into Eq. (3.18) and contracting

the resultant equation with the projection operator, hµ⇥ = gµ⇥ � uµu⇥ , one obtains [10],

u⇥⌅⇥u� =
1

⇥ + p

�
f �
2

f2
(Lm + p)⌅⇥R +⌅⇥p

⇥
h⇥� (3.19)

⇥f� .

Thus, the motion of a point-like test particle is non-geodesic due to the appearance of the extra force

f�. This force is orthogonal to the four-velocity of the particle due to the fact that, by definition,

h⇥�u� = 0 . (3.20)

1Which arises directly from the definition of the Riemann tensor, ⇥c⇥dXa �⇥d⇥cXa = Ra
bcdXb.
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f ��
1 + 2Lmf ��

2

f2
+

f ���
1 + 2Lmf ���

2

f2
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1Which arises directly from the definition of the Riemann tensor, ⇥c⇥dXa �⇥d⇥cXa = Ra
bcdXb.

Chapter 3

f (R) Theories with non-minimal

curvature-matter coupling

3.1 Action, Field Equations and Phenomenology

Recently, there has been a revival of interest in a class of modified gravity theories where, besides

the usual modification in the gravity sector, discussed in the previous chapter, it is introduced a

coupling between curvature and matter. This revival of interest is due to the fact that this non-

minimal curvature-matter coupling gives rise to a violation of the conservation equation of the energy-

momentum tensor which may introduce an extra force in the theory [10] (see also Ref. [11] for a recent

review on the subject). The phenomenology of these models is considered in more detail below.

The action of interest has the following form,

S =
⇤ �

1
2
f1(R) + f2(R)Lm

⇥⇥
�gd4x , (3.1)

where fi (with i = 1, 2) are arbitrary functions of the Ricci scalar. The second function, f2(R), is

usually considered to have the following form,

f2(R) = 1 + ⇥⇤2(R) , (3.2)

where ⇥ is a constant and ⇤2 is another function of R. These kind of non-minimal couplings were first

proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in

that paper, it was only considered the case where f2(R) = R�. One considers here a broader class of

models.

As stated in the previous chapter, only the metric formalism is considered. Thus, as performed in

Section 2.1, varying action (3.1) with respect to the metric yields

�S =
⇤ �

1
2
⇥
�g

�(
⇥
�gf1(R))
�gµ⇥

+
1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ⇥

⇥
�gµ⇥⇥�gd4x . (3.3)
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Action: 

Field equations: 

Effective energy-momentum tensor non-conservation: 

Eq. motion test particle: 
        (Perfect fluid) 

1

�µ⇤ = ⇥µ⇥⇤ � gµ⇤g�⇥⇥�⇥⇥ (1)

[O.B., Böhmer, Harko, Lobo 2007 ]   
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proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in
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review on the subject). The phenomenology of these models is considered in more detail below.

The action of interest has the following form,

S =
⇤ �

1
2
f1(R) + f2(R)Lm

⇥⇥
�gd4x , (3.1)

where fi (with i = 1, 2) are arbitrary functions of the Ricci scalar. The second function, f2(R), is

usually considered to have the following form,

f2(R) = 1 + ⇥⇤2(R) , (3.2)

where ⇥ is a constant and ⇤2 is another function of R. These kind of non-minimal couplings were first

proposed in Ref. [12] motivated by the issue of the accelerated expansion of the universe. However, in

that paper, it was only considered the case where f2(R) = R�. One considers here a broader class of

models.

As stated in the previous chapter, only the metric formalism is considered. Thus, as performed in

Section 2.1, varying action (3.1) with respect to the metric yields

�S =
⇤ �

1
2
⇥
�g

�(
⇥
�gf1(R))
�gµ⇥

+
1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ⇥

⇥
�gµ⇥⇥�gd4x . (3.3)

9

f(R)	
  theory	
  of	
  gravity	
  with	
  non-­‐minimal	
  curvature-­‐ma<er	
  coupling	
  (II)	
  
 



New	
  f(R)	
  modified	
  theory	
  of	
  gravity	
  

	
  
	
  

	
  
• 	
  Pioneer-­‐like	
  accelera-on:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016 ]   
 

 •  Implications: 

.const−α

[Anderson, Laing, Lau, Liu, Nieto, Turyshev 2002] 
                       [O.B., Páramos 2004] 

•  However, most likely the Pioneer anomalous acceleration is due to  
on-board thermal effects   

[O.B., Francisco, Gil, Páramos 2008, 2011] 
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[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016 ]   
 

 •  Implications: 

.const−α

[Anderson, Laing, Lau, Liu, Nieto, Turyshev 2002] 
                       [O.B., Páramos 2004] 

•  However, most likely the Pioneer anomalous acceleration is due to  
on-board thermal effects   

[O.B., Francisco, Gil, Páramos 2008, 2011] 

f(R)	
  theory	
  of	
  gravity	
  with	
  non-­‐minimal	
  curvature-­‐ma<er	
  coupling	
  (III)	
  



f(R)	
  theory	
  of	
  gravity	
  with	
  non-­‐minimal	
  curvature-­‐ma<er	
  coupling	
  (IV)	
  

	
  
	
  
	
  
	
  

	
  

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016 ]   
 

 
•  Stellar stability  
  [O.B., Páramos, Phys. Rev. D 77 (2008)] 

•  On the non-trivial gravitational coupling to matter 
  [O.B., Páramos, Class. Quant. Grav. 25 (2008)]  

•  Non-minimal coupling of perfect fluids to curvature  
  [O.B., Lobo, Páramos, Phys. Rev. D 78 (2008)] 

•  Non-minimal curvature-matter couplings in modified gravity (Review) 
  [O.B., Páramos, Harko, Lobo, arXiv:0811.2876 [gr-qc]] 

•  A New source for a braneworld cosmological constant from a modified gravity model in 
the bulk     [O.B., Carvalho, Laia, Nucl. Phys. B 807 (2009)] 

•  Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to 
matter        [O.B., Sequeira, Phys. Rev. B 79 (2009)] 

•  Mimicking dark matter through a non-minimal gravitational coupling with matter                     
[O.B., Páramos, JCAP 1003, 009 (2010)] 

•  Accelerated expansion from a non-minimal gravitational coupling to matter  
[O.B., Frazão, Páramos, Phys. Rev. D 81 (2010)] 

•  Reheating via a generalized non-minimal coupling of curvature to matter                    
[O.B., Frazão, Páramos, Phys. Rev. D 83 (2011)] 

  



f(R)	
  theory	
  of	
  gravity	
  with	
  non-­‐minimal	
  curvature-­‐ma<er	
  coupling	
  (V)	
  

	
  
	
  
	
  
	
  

	
  

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016 ]   
 

 
•  Mimicking the cosmological constant: Constant curvature spherical solutions in non-
minimally coupled model  
[O.B., Páramos, Phys. Rev. D 84 (2011)] 

•  On the dynamics of perfect fluids in non-minimally coupled gravity  
[O.B., Martins, Phys. Rev. D 85 (2012)]    
 
•  Mimicking dark matter in clusters through a non-minimal gravitational coupling with 
matter: the case of the Abell cluster A586                                                                           
[O.B., Frazão, Páramos, Phys. Rev. D 86 (2012)] 

•  Traversable Wormholes and Time Machines in non-minimally coupled curvature-matter  
f(R) theories                                                                                                                           
[O.B., Ferreira, Phys. Rev. D 85 (2012)]    

•   More general clusters, the bullet cluster,  ... 



 Energy Conditions and Stability  

 
 
 
 
 

                       [O.B., Sequeira, Phys. Rev. B79 (2009)]   
 

 
•  Physical Viability 

 
  - Match GR Parametrized Post-Newtonian behaviour at solar system 
    [O.B., Páramos, Class. Quant. Grav. 25 (2008)]  
 
  - Can lead to a phenomenologically consistent cosmology if the 
    Energy Conditions are satisfied: 
       Strong Energy Condition (SEC) (Gravity is attractive) 

       Null Energy Condition (NEC) (Gravity is attractive) 

       Dominant Energy Condition (DEC) (                    ) 

       Weak Energy Condition (WEK) (Positive energy density) 

 - Instability Free 

       Dolgov-Kawasaki instability 

- Ghost free, well posed Cauchy problem, correct cosmological             
perturbations, ... 

vsound � c



Action and Field equations 

Formalismo Métrico 
Field equations: 

Effective energy-momentum tensor: 

  Effective gravitational coupling: 



Effective quantities 

Formalismo Métrico 
Perfect fluid: 

Robertson-Walker metric: 

Effective energy-density: 

Effective pressure: 

Effective gravitational coupling: 



Kinematical Quantities 
Aplicação a uma classe de modelos 

•  Flat Robertson-Walker metric 

 

•  Deceleration (q), jerk (j), snap (s) parameters 



Energy Conditions 

•  Raychaudhuri eq. for the expansion parameter for a 
congruence of timelike geodesics 

 
 

•  Raychaudhuri eq. for a congruence of null geodesics 

 
 

•  Condition for attractive gravity   



Energy Conditions 

•   SEC 
 
•      NEC 

Warrant that gravity is geometrically attractive 

•     SEC 

•     NEC 



Energy Conditions 

•     DEC 

•     WEC 

                                           Transformations  
                (GR  f(R) theory with non-minimal coupling) 



Energy Conditions 
•   Models  

•     Energy conditions: 



Aplicação a uma classe de modelos 

•  SEC 

 

 

 

•  NEC 

 

•  DEC 

 
             

 



Aplicação a uma classe de modelos 
•  WEC 

 
 
 
 
•  Positive gravitational coupling               
 

 
 
•  Dolgov-Kawasaki criterion (aDK=bDK=0) 
 

 

 

 

 



Dolgov-Kawasaki Instability 

Fundamento Teórico •  Dynamical eq. for the scalar curvature 

•  Perturbative equation 

 
 
•  Stability Criterion  

 



Dolgov-Kawasaki Criterion 
Aplicação a duas classes de modelos 

•  Models 

 
•  Stability conditions 



Dolgov-Kawasaki Criterion 
Aplicação a duas classes de modelos 

•  Results 

a=b=0 



Dolgov-Kawasaki Criterion 

Aplicação a duas classes de modelos 
•  Models 

 

•  Stability condition 

R>0 



The Action of a Perfect Fluid: the GR story (I) 

Formalismo M---étrico Action(s): 

Actually, the most general action involves energy density, ρ, matter 
current, Jµ, entropy per particle (constant), s, and Lagrangian coords., 
φ, θ, αA: 

  Perfect fluid: 

[Schutz 1970; Hawking & Ellis 1973; Alba & Lusanna 2002; Brown 2003] 



The Action of a Perfect Fluid: the GR story (II) 

Formalismo M---étrico Eqs. Motion: 

where n is the particle number density,                          ,   
such that,                 implies the covariant conservation,                        . 

First Law of Thermodynamics: 



The Action of a Perfect Fluid: the modified gravity model 
with non-minimal coupling to curvature story (III) 

Formalismo M---étrico 
[O.B., Lobo, Páramos Phys. Rev. 78 (2008)] 

If                                                            which for a const. p, the motion is geodesic. 

If however,  

[Sotiriou & Faraoni 2008] 

In the context of the f(R) model with non-minimal couplig to curvature: 

that is, the motion is non-geodesic! 



The Action of a Perfect Fluid: the modified gravity model 
with non-minimal coupling to curvature story (IV) 

Formalismo M---étrico 
[O.B., Lobo, Páramos Phys. Rev. 78 (2008)] 

Indeed, the degeneracy has been lifted, however, in order to warrant 
that the non-minimal coupling proposal is consistently applied, one 
should consider the action 
 

instead the most obvious one  

as in this way the affected eqs. of motion are (others remain unchanged): 



General	
  Rela-vity	
  admits	
  Closed	
  Timelike	
  Curves	
  (CTCs):	
  
A	
  typology	
  	
  

Sols.	
  with	
  a	
  “bite”	
  on	
  the	
  light	
  cone	
  –	
  rota-on,	
  cosmic	
  string	
  
	
  [Gödel	
  1949;	
  Go<	
  1991;	
  Deser,	
  Jackiw,	
  ‘t	
  Hoo]	
  1992;	
  Deser	
  1993]	
  
	
  

Traversable	
  wormhole	
  sols.	
  	
  
	
  [Morris,	
  Thorne,	
  Yurtsever	
  1988;	
  Lobo	
  2006;	
  Garaeni,	
  Lobo	
  2007;	
  ...]	
  
	
  
Warp	
  drive	
  sols.	
  
[Alcubierre	
  1994;	
  Lobo,	
  Visser	
  2003;	
  ...]	
  

	
  
Krasnikov	
  tube	
  
[Krasnikov	
  1998;	
  ...]	
  

	
  
	
  
	
  

  

Weak Energy  
Condition 
Violation 



Wormhole	
  geometry	
  
	
  

	
  
	
  
	
  

 [Morris, Thorne 1998] 

“Wormholes in Spacetime and their use 
for Interstellar Travel: a tool for teaching 
General Relativity”   
-  Avoid singularities and horizons 
-  Ensure well behaved physical 

properties and metric components 
-  Ensure stability 

 

 [Morris, Thorne, Yurtsever 1988] 

“Wormholes, Time Machines and         
the Weak Energy Condition”   



Time	
  travel	
  paradoxes	
  
	
  

	
  
	
  
	
  

- The killing of an ancestror paradox 

- The Oedipus time traveller complex  

- ...  

- Creation of information paradox  

Time traveller from the future conveys the secret of time travelling 
to a researcher, who in turn publishes it. Later, the researcher 
travels back in time and convey the secret to his/her younger 
person. So the information has appeared from “nowhere”. 
 

 

Serious threats to Causality 



Puta-ve	
  Solu-ons	
  	
  

 
CTCs might exist, but that they cannot entail any type of causality violation 
or time paradox  
It assumes either that there is only one timeline or that alternative timelines 
(such as in the Many-Worlds Interpretation of Quantum Mechanics) are not 
accessible  	
  

Hawking’s chronology protection conjecture  [Hawking 1992] 
“It seems that there is a Chronology Protection Agency which prevents the 
appearance of CTCS so to make the universe safe for historians” 
Quantum Mechanics (Many Worlds Interpretation)?  
[Deustch 1991, Deustch, Lockwood 1994] 
Systems can travel from one time in one world to another time in another 
world, but no system travels to an earlier time in the same world 
 Emergent Gravity Solution [O.B. 2012]  
CTCs do not actually exist as they require conditions for which the affective 
and emergent GR and other classical models of gravity are no longer valid	
  

Novikov’s self-consistent principle [Novikov 1990] 

 

 



Traversable	
  Wormholes	
  and	
  Time	
  Machines	
  in	
  non-­‐
minimally	
  coupled	
  curvature-­‐ma<er	
  f(R)	
  theories	
  	
  

Effective gravitational coupling: 

 [O.B., Ferreira, Phys. Rev. D 85 (2012)]    
   
 

 

 
Wormhole sols.            WEC violation 

            

GR  
Tµν
matterkµkν ≤ 0→ ρ ≤ 0

Non-minimally coupled theory 
T̂µνk

µkν ≤ 0

Effective energy-momentum tensor: 

10 CHAPTER 3. F (R) THEORIES WITH NON-MINIMAL CURVATURE-MATTER COUPLING

Since the only di⇥erence between actions (2.2) and (3.1) is in the matter term, it is obvious that

the additional modification in the field equations will came from the variation of this term. Thus,

considering the variation of this term and using the results from Section 2.1 one obtains,
⌥ ⇧

1⇥
�g

�(
⇥
�gf2(R)Lm)

�gµ�

⌃
�gµ�⇥�gd4x =

⌥ ⇧
�f2(R)
�gµ�

Lm + f2(R)
1⇥
�g

�(
⇥
�gLm)
�gµ�

⌃
�gµ�⇥�gd4x ,

(3.4)

=
⌥ ⇧

Lmf �
2(R)Rµ� ��µ�(Lmf �

2(R))� 1
2
f2(R)Tµ�

⌃
�gµ�⇥�gd4x .

(3.5)

Hence, the field equations obtained from action (3.1) are given by

(f �
1 + 2Lmf �

2)Rµ� �
1
2
f1gµ� ��µ�(f �

1 + 2Lmf �
2) = f2Tµ� . (3.6)

Making explicit the Einstein tensor, Gµ� , one rewrites the field equations and gets

Gµ� =
f2

f �
1 + 2f �

2Lm

�
T̂µ� + Tµ�

⇥
, (3.7)

where the e⇥ective energy-momentum tensor T̂µ� has been defined as

T̂µ� =
1
2

⇤
f1

f2
� f �

1 + 2Lmf �
2

f2
R

⌅
gµ� +

1
f2

�µ� (f �
1 + 2Lmf �

2) . (3.8)

From Eq. (3.7) one can define an e⇥ective coupling

k̂ =
f2

f �
1 + 2Lmf �

2

, (3.9)

and therefore the field equations can be written in a more familiar form,

Gµ� = k̂
�
T̂µ� + Tµ�

⇥
. (3.10)

Thus, in order to keep gravity attractive, k̂ has to be positive from which follows the additional

condition
f2

f �
1 + 2Lmf �

2

> 0 . (3.11)

As expected, setting f1(R) = R and f2(R) = 1 one recovers Einstein’s theory.

The e⇥ective energy-momentum tensor defined by Eq. (3.8) can be written in the form of a perfect

fluid,

Tµ� = (⇥ + p)uµu� � pgµ� , (3.12)

if one defines an e⇥ective energy density and an e⇥ective pressure. However, given the presence of

the higher order derivatives in Eq. (3.8), in order to proceed in this way it is necessary to specify

the metric of the space-time manifold of interest. Since one is interested in cosmological applications,

the Robertson-Walker (RW) metric is a natural choice. Hence, in what follows, one considers the

homogeneous and isotropic flat RW metric with the signature (+,�,�,�),

ds2 = dt2 � a2(t)ds2
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NEC violation 
 

(Tµν
matterkµkν ≥ 0)



How to build a Time Machine 
 

Recipe: 

 

Acquire a traversable wormhole; 

  
Create a red-shift between the two 

wormhole mouths by, for example,  

acelerating one of the wormhole mouths; 
 

Bring the mouths close together adiabatically. 

 

 

 
 

 

 

 [M. Visser, Phys. Rev. D 47, 554 (1993)] 
 

[Morris, Thorne, Yurtsever 1988] 



 

Wormhole Geometry 

Static spherically symmetric space-time: 

 
 
 

  Further constraints: 
 

 

 

 

 

 

Equations solved for                                   in the presence of a                                  
fluid with stress-energy tensor: 

 
 

 



Results	
  
- System of 3 non-linear second order diff eqs. with 5 unknown 
functions 

 

Cases considered: 

Isotropic pressure: 

Two Energy densities 

 

- Function b(r) obtained everywhere   

 
- Pressure and Redshift obtained:  

At infinity, where the geometry should be assymptotically flat 

Near the wormhole throat where NEC violation must occur 

 

[Garcia,  Lobo 2010] 



Solu-ons	
  
   Energy Density: 

  Case 1: Constant and localized close the 
wormhole throat 

 

  Case 2: Exponentially decaying 
 

  

  Results: 

  Assymptotically flat wormhole solutions with 
ordinary matter if: 

 

 

-  Case 1:  

 

 

 

 

-  Case 2: 

 [O. Bertolami and R. Z. Ferreira, Phys. Rev. D 85, 104050 (2012)] 



Case 2 

 

One obtains differentiable and well behaved wormhole solutions 

which respect all the constraints to be traversable: Time Machines 

Solu-ons	
  
	
  

Case 1 

CASE 1 

There is a discontinuity at an arbitrary scale which gives rise to 

problems associated with singularities 

[O.B., Ferreira, Phys. Rev. D 85 (2012)]  



Violation of the Equivalence Principle 

Fundamento Teórico •  Expected at cosmological level as the fall of matter will depend 
on the local curvature as different bodies would feel a different 
coupling to gravity: 

•  Similar to what is expected if dark energy couples to dark 
matter (c.f. below) 

                             [O.B., Gil Pedro, Le Delliou 2007, 2009, 2012] 

 
•  Means an IR breaking of GR and presumably a bearing on the 

cosmological constant problem at low energies  

 

[O.B. 2009] 
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  Evolu-on	
  equa-ons:	
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  From	
  which	
  follows:	
  	
  	
  	
  

	
  
	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
•  	
  Bias	
  parameter:	
  	
  
	
  	
  	
  	
  	
  
	
  
	
  
	
  

Dark	
  Energy	
  –	
  Dark	
  Ma<er	
  Interac-on	
  
[O.B., Gil Pedro, Le Delliou Phys. Lett. B654 (2007); ; GR&R (2009, 2012)] 

GCG: 



	
  
•  X-­‐ray,	
  velocity	
  dispersion	
  and	
  weak	
  gravita-onal	
  lensing	
  (WGL):	
  	
  
	
  	
  	
  	
  	
  	
  
	
  

	
  	
  	
  	
  
•  WGL	
  concerns	
  a	
  spherical	
  region	
  with	
  422	
  kpc	
  radius	
  and	
  NGal=25	
  galaxies	
  	
  
	
  	
  	
  (within	
  a	
  570h70-­‐1	
  kpc	
  region	
  with	
  31	
  galaxies);	
  hence	
  with	
  the	
  known	
  coords.:	
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  we	
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Es-mates	
  
[O.B., Gil Pedro, Le Delliou (Phys. Lett. B654,165 (2007))] 

[Cypriano, Neto, Sodré, Kneib 2005] 



 
•   Generalized Cosmic Virial Theorem (Layzer-Irvine eq.):  
      
 

   
 where                                                                             
       
        
 
                                                                              (         - auto-correlation function) 
 
•  Abell cluster A586 – spherical and close to stationary equilibrium: 

 
      
 
•   Moreover:  
 

Cosmic Virial Theorem and the Abell cluster A586 
[O.B., Gil Pedro, Le Delliou Phys. Lett. B654 (2007)] 



 
•   Interaction requires:       
•    For                                                                                                                                                      
       
 
      
•  GCG:    

  
•  Data is consistent with interaction ! 

•  Same methodology used for 33 relaxed galaxy clusters (optical, X-ray, 

gravitational lensing) suggests evidence for the interaction of DE and DM                                         

                                   [Abdalla, Abramo, Sodré, Wang 2008] 

•  Gamma ray bursts (not so clear)                        [Barreiro, O.B., Torres 2010]   

•  Realistic density profiles (A586, A1689) (idem) [O.B., Gil Pedro, Le Delliou 2012] 
                              

 
     
 
 
 

Dark Energy – Dark Matter Interaction 
[O.B., Gil Pedro, Le Delliou Phys. Lett. B654 (2007)] 



 
 
•   Bias parameter evolution indicates a possible violation of the 

Equivalence Principle  

     
 
 
 

Dark Energy – Dark Matter Interaction and the 
Equivalence Principle (EP) 

[O.B., Gil Pedro, Le Delliou Phys. Lett. B654 (2007)] 



 
 
•   Consistency with interaction results from SN Ie, CMB and BAO:  
    [Guo,Ohta, Tsujikawa 2007] 
 
 

 
 

Consistency of the Abell cluster A586 results - I 

[O.B., Gil Pedro, Le Delliou GR&G 2009] 



 
•  DM gravitational fall into DM from a simulation of the tidal stream of 

the Sagittarius dwarf galaxy which allows for:  
     
 
 
                        [Kesden, Kamionkowski 2006]    
 
•  Assuming DE-DM interaction implies a change of the DM number 

density, then:  
 

Consistency of the Abell cluster A586 results - II 

[O.B., Gil Pedro, Le Delliou, GR&G 2009] 

)107.2(1.1 9

)(

)( −

−

− ×=≤ z
G
G

BDM

DMDM



 
•  For                               and                                 : 

   
 
                        
 
 
 
 
 
 
 
 
which for z=0.17 (                   )   yields  

Consistency of the Abell cluster A586 results  

[O.B., Gil Pedro, Le Delliou GR&G 2009] 

163.0=δ



Conclusions 
- f(R) modified graviy theories of with non-minimal curvature-matter 
coupling have interesting phenomenological features 

- They are shown to be physically consistent and all energy conditions 
depend on the geometry, matter Langragian and parameters (ε, λ) 

 

- All energy conditions, positive effective gravitational coupling and 
stabiltiy conditions can be expressed through a single type inequality 

- For a perfect fluid, the degeneracy found in GR at the Lagrangian 
density level is lifted 

- It admits closed timelike curves and traversable wormholes 

- It leads to violation of the Equivalence Principle at cosmological 
scales 

- It successfuly mimicks dark matter and dark energy 

 


