The ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be cross-section}$ at astrophysical relevant energies

Antonino Di Leva

University of Naples and INFN Naples

LNGS 6 Feb 2011

Thursday, February 7, 13

$^{3}\text{He}(\alpha,\gamma)^{7}\text{Be and astrophysics}$

BBN nuclear reaction network

$^{3}\text{He}(\alpha,\gamma)^{7}\text{Be and astrophysics}$

BBN nuclear reaction network ⁷Li/H Be R. Cyburt Phys.Rev. D 70(2004) 10 **BBN** calculation 7. $t(\alpha,\gamma)^7$ Li 1. n - p Astronomical -10 observation 2. $p(n,\gamma)d$ 8. 3 He(n,p)t 10 p 9. ${}^{3}\text{He}(d,p){}^{4}\text{He}$ 3. $d(p,\gamma)^{3}$ He 4. $d(d,n)^{3}$ He 10. ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$ 11. 7 Li(p, α)⁴He 10 5. d(d,p)t $\eta \times 10^{10}$ n 6. $t(d,n)^4$ He 12. ⁷Be(n,p)⁷Li SuperKamiokande+SNO $p + p + e^{-} \Rightarrow {}^{2}H + \nu_{e}$ $p + p \Longrightarrow^2 H + e^+ + \nu_e$ Homestake Borexino -Gallium 1012 99.75%0.25%1011 $^{2}\text{H} + \text{p} \Rightarrow ^{3}\text{He} + \gamma$ pp→ ±1% 1010 86%14%±10.5% 10 9 (cm⁻² s⁻¹) $^{3}\text{He} + {}^{4}\text{He} \Rightarrow {}^{7}\text{Be} + \gamma$ $^{3}\text{He} + ^{3}\text{He} \Rightarrow ^{4}\text{He} + 2p$ 10 99.89%0.11%10 XnLJ 10 ±10.5 $^{7}\mathrm{Be} + e^{-} \Rightarrow ^{7}\mathrm{Li} + \nu_{e}$ $^{7}\text{Be} + p \Rightarrow ^{8}\text{B} + \gamma$ 104 10 3 ±16% ⁷Li + p \Rightarrow 2 ⁴He ⁸B \Rightarrow ⁸Be^{*} + e⁺ + ν_e 10 ² 10 1 L 0.1 ppII ppI ppIII 10 Neutrino Energy in MeV J.N. Bahcall et al ApJL 621(2005)L85

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

- * Use as much of experimental information as possible
- * Choose the model that best describes all of the experimental datasets
- Treat data in statistical robust way (no arbitrary inflation of errors)
- Take into account combined systematic errors
- Determine best estimate of S₃₄(0)

Datasets and models selection

The least square function is a χ^2 variable only under the conditions:

- model is adequate to describe the data;
- fitted measurements are independent;
- measured quantities have a gaussian distribution, whose standard deviations must be correctly evaluated.
 Parker, Nagatani, Kräwinkel, Hilgemeier: include systematic uncertainties.

Robertson, Alexander, Volk: single data point.

	18 osborne	1 osborneAct	3 narasingh	2 LUNAprm	6 LUNAact	7 brownPrm	7 brownAct	16 ERNA	2 carmona
	·	•	.,		•			•	
Descouvemont	85.91	1.56	1.15	0.84	6.61	20.23	5.26	31.76	5.65
Kajino	83.33	2.31	1.37	0.66	6.63	9.65	12.28	15.08	1.49
Csoto	94.55	2.49	0.88	1.45	6.72	18.83	3.39	12.81	0.54
LiuKanadaTang	79.23	2.42	2.79	0.15	7.29	16.53	21.46	18.58	1.61
Nollett	82.90	2.45	0.91	0.66	6.62	10.67	10.02	12.15	1.36
Mohr	91.30	1.50	1.98	1.23	6.65	31.11	6.63	35.71	4.97
Neff	87.22	3.92	3.98	1.20	6.65	54.76	46.16	8.95	0.02

Datasets and models selection

The least square function is a χ^2 variable only under the conditions:

- model is adequate to describe the data;
- fitted measurements are independent;
- measured quantities have a gaussian distribution, whose standard deviations must be correctly evaluated.
 Parker, Nagatani, Kräwinkel, Hilgemeier: include systematic uncertainties.

Robertson, Alexander, Volk: single data point.

	18 osborne	1 osborneAct	3 narasingh	2 LUNAprm	6 LUNAact	7 brownPrm	7 brownAct	16 ERNA	2 carmona
Descouvemont	85.91	1.56	1.15	0.84	6.61	20.23	5.26	31.76	<mark>5.65</mark>
Kajino	83.33	2.31	1.37	0.66	6.63	9.65	12.28	15.08	1.49
Csoto	94.55	2.49	0.88	1.45	6.72	18.83	3.39	12.81	0.54
LiuKanadaTang	79.23	2.42	2.79	0.15	7.29	16.53	21.46	18.58	1.61
Nollett	82.90	2.45	0.91	0.66	6.62	10.67	10.02	12.15	1.36
Mohr	91.30	1.50	1.98	1.23	6.65	31.11	6.63	35.71	4.97
Neff	87.22	3.92	3.98	1.20	6.65	54.76	46.16	8.95	0.02

Model: Nollett

$$P(w \ge w_{ij})$$

$$w_{ij} = \frac{\left|S_{34i}(0) - S_{34j}(0)\right|}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Model: Nollett

$$P(w \ge w_{ij})$$

$$w_{ij} = \frac{\left|S_{34i}(0) - S_{34j}(0)\right|}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Kajino or Nollet model $S_{34}(0) = 0.57 \pm (0.02)_{exp} \pm (?)_{model} \text{ keVb}$

Model: Nollett

$$P(w \ge w_{ij})$$

$$w_{ij} = \frac{|S_{34i}(0) - S_{34j}(0)|}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Kajino or Nollet model $S_{34}(0) = 0.57 \pm (0.02)_{exp} \pm (?)_{model}$ keVb

σ_{model} = 0.02 keVb Adelberger et al. RevModPhys 83(2011)195

Improved model?

Nollett, Phys. Rev. C63(2001)054002

T. Neff, PRL106(2010)042502

Summary

 $S_{34}(0) = 0.57 \pm (0.02)_{\text{exp}} \pm (0.02)_{\text{model}} \text{ keVb}$

using Kajino or Nollet model

- * Improved models are needed to assess the low energy slope of $S_{34}(E)$
- Additional experimental information to better constrain the models will help to reduce the uncertainty