DCH performance vs endcap shape and position

Matteo Rama Giuseppe Finocchiaro LNF 10 October 2012

Goals

- Evaluate the DCH performance as a function of the shape and position of the endcaps
 - p resolution
 - K/ π separation using dE/dx
 - -B→D*K reco. efficiency, ΔE
- All studies shown in these slides have been produced using FastSim V0.3.2

Configurations

common features:

- 10 superlayers, 4 layers each: A A S₊ S₋ S₊ S₋ S₊ S₋ A A
 - |stereo angle| ≈ 0.06 rad
 - inner wall radius: 26.5 cm
 - outer wall radius: 80.3 cm
 - sense wires r_{min} : 28.6 cm
 - sense wires r_{max} : 78.0 cm
- hit spatial resolution: babar-like
- hit efficiency vs polar angle: babar-like
- $\sigma(dE/dx)$ modelization: babar-like

$$- \sigma\left(\frac{dE}{dx}\right) = \alpha \left|\frac{dE}{dx}\right|^{\beta} dx^{\gamma} \quad \alpha, \beta, \gamma \text{ tuned on babar data}$$

distinguishing features

- shape and position of endcaps
 - concave/convex
 - varying position along z

FastSim configurations based on drawings provided by S. Lauciani (see backup slides)

(babar-like: tuned on babar data)

x-z layout in fastsim

x-z layout in fastsim

x-z layout in fastsim

Part I

validation with p = 4 GeV/c single particles

single particles generated with:

- p = 4 GeV/c
- dP/ dcos θ = const [θ = polar angle]
- $\cos\theta$ in [0.3, π -0.3] rad [SVT angular acceptance]
- 50k events for each configuration

DCH dE/dx sample hits vs theta

|(dE/dx)_pi-(dE/dx)_K|/σ(DCH dE/dx) vs theta 1.8 1.6 1.4 1.2 0.8 option 1 option 2 0.6 option 3 option 4 0.4 option 5 0.2 0<u>`</u> 20 40 100 60 80 120 140 160 180

|(dE/dx)_pi-(dE/dx)_K|/σ(DCH dE/dx) vs theta

Part II

single particles (π^+) with flat p and cos θ distributions

single particles generated with:

- p in [0.1, 4.0] GeV/c
- dP/ dcos θ = const [θ = polar angle]
- θ in [0.30,0.46] rad [DCH forward region] or θ in [2.40, π -0.30] rad [DCH backward region]
- 200k events for each configuration

Part II

single particles (π^+) with flat p and cos θ distributions

single particles generated with:

- p in [0.1, 4.0] GeV/c
- dP/ dcos θ = const [θ = polar angle]
- θ in [0.30,0.46] rad [DCH forward region] or θ in [2.40, π -0.30] rad [DCH backward region]
- 200k events for each configuration

10 October 2012

M. Rama

≈10% σ(p)/p relative variation over different configs.

At fixed z length, concave and convex configs shows similar performance within the stat uncertainty.

M. Rama

Integrated over the whole bwd region, p resolutions are similar within a ≈4% relative variation.

$\begin{array}{c} \text{Part III} \\ B^0 \rightarrow D^{*-}K^+, D^{*-} \rightarrow \overline{D}{}^0K^-, \overline{D}{}^0 \rightarrow K^+\pi^- \end{array}$

$5x10^4 \text{ B} \rightarrow \text{D*K}$ signal events for each configuration

• truth matching required

ΔE reconstruction

reconstruction efficiency of $B \rightarrow D^*K$

DCH configuration	B→D*K reco efficiency [%] (ΔE <50 MeV ~2.5σ)
option 1	65.4 ± 0.2
option 2	64.4 ± 0.2
option 3	65.1 ± 0.2
option 4	64.6 ± 0.2
option 5	65.3 ± 0.2

The (tiny) differences are driven by the backward region: eff[opt1,3,5] > eff[opt 2,4]

Options 1, 2 and 3 have the same efficiency within $\approx 0.2\%$

p vs θ distribution of prompt kaons (B \rightarrow D*K)

barrel region: 32242 (93.2%) backward region: 1157 (3.3%)

M. Rama

 $K/\pi \text{ separation } \equiv \frac{\left| (dE/dx)_{\pi} - (dE/dx)_{K} \right|}{\sigma (dE/dx)}$

$$(dE/dx)_h^{=}$$
 expected dE/dx
in the **h** hypothesis

 $\sigma(dE/dx) = \frac{dE/dx \text{ measurement}}{\text{error}}$

|(dE/dx)_pi-(dE/dx)_K|/♂(DCH dE/dx) forward

config	$\mu \pm RMS/\sqrt{N}$
1	1.723 ± 0.002
2	1.751 ± 0.003
3	1.767 ± 0.003
4	1.787 ± 0.003
5	1.822 ± 0.003

The pattern *sep1<sep2<sep3<sep4<sep5* is visible. Differences are tiny.

At fixed z length, concave config slightly better (≈1%) than convex config. [see opt2 vs opt1 and opt4 vs opt3]

 K/π separation

Conclusions

- 5 options for the DCH endcaps have been compared. They differ in shape and z position.
- Differences in performance are generally small, as expected.
- Forward region
 - − <u>K/π separation</u>: At fixed z position, the concave shape shows slightly better performance (\approx 1% relative gain).
 - <u>p resolution</u>: ≈10% σ(p)/p variation over different configs. Consistent with previous estimates of ~1% per cm of DCH length[1]. At fixed z length, concave and convex configs shows similar performance within the stat uncertainty (2-3%).
 - <u>B</u> \rightarrow D*K: Possible differences in absolute (relative) reco efficiency due to track reconstruction and Δ E resolution are below 0.2% (0.3%) among different configs.
- Backward region
 - <u>K/π separation</u>: Using single particles generated with flat cosθ and p distributions, and averaging over the bwd region, the convex configuration shows slightly better performance (≈2%). Using prompt kaons from B->D*K, concave and convex configurations are consistent within 0.5%.
 - <u>p resolution</u>: Integrated over the whole bwd region, p resolutions are equal within a ≈4% relative uncertainty.
 - <u>B->D*K</u>: convex configuration shows slightly larger B→D*K reco efficiency: 0.8% (1.2%) absolute (relative) efficiency gain.

[1] <u>http://agenda.infn.it/getFile.py/access?contribId=74&sessionId=11&resId=0&materialId=slides&confId=2902</u>
[2] <u>http://agenda.infn.it/getFile.py/access?contribId=133&sessionId=19&resId=0&materialId=slides&confId=1165</u>

convex vs concave shape summary

Summary of results concerning the comparison between the concave and convex shapes with a given length (i.e., option1 vs option2 or option3 vs option4)

	forward region	backward region
K/ π separation	concave +1% w.r.t. convex	With single particles (flat cosθ): convex +2% w.r.t. concave With prompt K from B→D*K: same separation within 0.5%. (*)
σ(p)/p	same resolution within 2-3% relative uncertainty (stat limited)	same resolution within ≈4% relative uncertainty (stat limited)
B->D*K reco. eff.	same reco. eff. within 0.3% relative uncertainty (stat limited)	convex +1.2% relative increase w.r.t. concave

(*) The K/ π separation depends on both the polar angle (see for example slide 17) and p. Therefore, results for particle samples with different polar angle and p distributions can vary.

backup

1) CONVEX dimensions -1310 +1750

Drawing from Stefano Lauciani, LNF

2> CONCAVE dimensions -1310 +1750

Drawing from Stefano Lauciani, LNF

10 October 2012

3) CONVEX dimensions -1310 +1793

Drawing from Stefano Lauciani, LNF

210 mm

4) CONCA∨E dimensions -1310 +1793

Drawing from Stefano Lauciani, LNF

5) CONVEX dimensions -1310 +1914

Drawing from Stefano Lauciani, LNF

x-z layout in fastsim

old SuperB (babar-like) configuration

DCH dE/dx sample hits vs theta

|(dE/dx)_pi-(dE/dx)_K|/σ(DCH dE/dx) vs theta

|(dE/dx)_pi-(dE/dx)_K|/σ(DCH dE/dx) vs theta

