# Measurement of the ratio of the charged kaon leptonic decays at NA62

**Venelin Kozhuharov** Laboratori Nazionali di Frascati - INFN University of Sofia

## PhiPsi13 12 September 2013

on behalf of the NA62 collaboration

Birmingham, Bratislava, Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain, Mainz, Merced, Moscow, Naples, Perugia, Pisa, Prague, Protvino, Rome I, Rome II, San Luis Potosí, Stanford, Sofia, Turin



- Motivation
- Experimental setup
- Data analysis
- Results
- Conclusion

## <u>Ke2: Motivation</u>

Within the Standard Model:



## Ke2: Motivation

#### Within the Standard Model:



- The value of  $R_{\kappa}$  could be different in case of SUSY and LFV models the correction could be as high as %
- Measurement of  $R_{_{\!\!K}}$  at with sub per cent precision tests the  $\mu\text{-}e$  universality and provides a sensible test of the SM



LHC



#### North Area

the second second second second second

## NA62 experiment





#### Using NA48/2 beam and detector setup



## **Detector setup**

 Magnetic spectrometer (DCH)
 4 drift chambers
 p\_⊥<sup>kick</sup> = 265 MeV/c

#### *∆p/p* = 0.48% ⊕ 0.009%\*p [GeV/c]

- Hodoscope  $\sigma(t) = 150 \text{ ps}$
- Liquid Krypton Calorimeter
  △E/E ≅ 3.2%/√E ⊕ 9%/E ⊕ 0.42%
- Hadron Calorimeter, Muon counters, Anticounters, Kaon Beam Spectrometer





# **Event selection**

#### **Geometry**

- 1 track in the detector acceptance
- Decay vertex
- Veto of extra photons

#### **Kinematics**

- 13 GeV/c < P < 65 GeV/c</p>
- Missing mass:  $M_{miss}^2 = (P_{\kappa}^4 P_{\ell}^4)^2$

 $P_{\kappa}$ : from K3 $\pi$  decays

#### Particle identification

- E: energy in the LKR
- p: momentum from DCH electrons: (0.9-0.95) < E/p < 1.1 muons: E/p < 0.85</li>



# **Background estimation**

- Dominant background contribution is from Kµ2 decays
  - Catastrophic energy loss in LKr
- Measured from data
  - Lead plate placed in front of the LKr
    - 55% of the total statistics
  - Clean sample of muons





MC used to correct for muon energy loss in the lead bar

Decrease the systematic uncertainty

$$- \delta P_{\mu e} / P_{\mu e} = 10\%$$

 $- \delta f_{Pb} / f_{Pb} = 2\%$ 

70

Venelin Kozhuharov, PhiPsi13

# <u>Ke2γ background</u>

- The definition of RK includes the IB part of Ke2γ
- Structure dependent contribution treated as background
  - SD not helicity suppressed
  - Rate comparable to Ke2
- SD- kinematically incompatible with Ke2
- SD+ is background if γ misses
  LKr or absorbed in the lead bar



Estimated using MC simulation:  $B/(S+B) = (2.60 \pm 0.11) \%$ Uncertainty mainly due to the measurement of the  $Br(Ke2\gamma_{SD})$ Eur. Phys. J. C64 (2009) 627

Venelin Kozhuharov, PhiPsi13





- Reconstructed 145958 Ke2 candidates
  - Total background contribution:  $B/(S+B) = (10.95 \pm 0.27)\%$





- Reconstructed 42.8 \*10<sup>6</sup> Kµ2 candidates
- Low background contribution: (0.50 ± 0.01)%



$$R_{K} = \frac{1}{D} \cdot \frac{N(K_{e2}) - N_{\rm B}(K_{e2})}{N(K_{\mu 2}) - N_{\rm B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2})}{A(K_{e2})} \cdot \frac{f_{\mu} \times \epsilon(K_{\mu 2})}{f_{e} \times \epsilon(K_{e2})} \cdot \frac{1}{f_{\rm LKr}}$$

 $N(K_{12}) \\ N_{B}(K_{12}) \\ f_{1} \\ f_{LKr} \\ \epsilon(K_{12}) \\ A(K_{12}) \\ D$ 

K<sub>12</sub> event candidates Background in Kl2 Lepton ID efficiency Global LKr efficiency K<sub>12</sub> trigger efficiency K<sub>12</sub> accceptance Downscaling of Kμ2 trigger

#### **Total systematic: 0.007 \* 10<sup>-5</sup>**

Total statistical: 0.007 \* 10<sup>-5</sup>

MC used for acceptance calculation

| Systematic effect           | <b>ΔR<sub>κ</sub>*10</b> ⁵ |
|-----------------------------|----------------------------|
| Kµ2 background              | 0.004                      |
| Ke2γ (SD+) background       | 0.002                      |
| Ke3 and K2 $\pi$ background | 0.003                      |
| Beam halo                   | 0.002                      |
| Matter composition          | 0.002                      |
| Acceptance                  | 0.002                      |
| DCH alignment               | 0.001                      |
| Electron ID                 | 0.001                      |
| 1-track trigger eff.        | 0.001                      |
| LKr readout ineff.          | 0.001                      |









0.36% precision, still compatible with the SM prediction!

• Still order of magnitude bigger error than the theory

#### NA62 might be able to achieve 0.2%

# <u>Measurement of Γ(Ke2)/Γ(πe2)</u>

Is it possible to profit from simultaneous pion and kaon beams?

• Standard Model: 
$$R_{K\pi}^{l} = \left|\frac{V_{us}}{V_{ud}}\right|^{2} \times \frac{f_{K}^{2}m_{K}}{f_{\pi}^{2}m_{\pi}} \times \left(\frac{1 - m_{l}^{2}/m_{K}^{2}}{1 - m_{l}^{2}/m_{\pi}^{2}}\right)^{2} \times (1 + \delta_{em})$$

- MSSM:  $R_{K\pi}^{l}(\text{MSSM}) = R_{K\pi}^{l}(\text{SM}) \times (1 r_{H}^{K})^{2}$ ,  $r_{H}^{K} = \frac{m_{K}^{2}}{M_{H\perp}^{2}} \left(1 \frac{m_{d}}{m_{s}}\right) \frac{\tan^{2}\beta}{1 + \epsilon_{0} \tan\beta}$
- 0.5 % measurement sensitive to inaccessible regions to  $B \rightarrow \tau \nu$



Venelin Kozhuharov, PhiPsi13



- Rare kaon decays provide a very challenging opportunity to probe the Standard Model
- Final result for  $R_{k}$  based on 2007 NA62 data presented
- Data driven estimations where possible
- Order of magnitude improvement on the precision
- Result compatible with the Standard Model
- NA62 is the present laboratory of charged kaon physics