

Hadronic Cross Section Measurements at BES-III

Sven Schumann Johannes Gutenberg Universität Mainz

Introduction

- Hadronic cross sections & R ratio
- Impact on a_{μ} and $\Delta \alpha_{had}$

Physics with Initial State Radiation

- ISR technique
- Hadronic final states at \sqrt{s} < 2.0 GeV
- ISR physics with BES-III

Energy Scan measurements

• BES-III Energy Scan for $\sqrt{s} = 2.0 \dots 4.5$ GeV

The R ratio

Hadronic cross section ratio R:

$$R = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

BES-III contributions to R data

Both ISR and Energy Scan measurements Energy range $0 < \sqrt{s} < 4.5$ GeV

The R ratio

Hadronic cross section ratio R:

$$R=rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

BES-III contributions to R data

Both ISR and Energy Scan measurements Energy range $0 < \sqrt{s} < 4.5$ GeV

Contributions to a_{μ} and $\Delta \alpha_{had}$

Contributions to a_{μ}^{had}

 ρ/ω resonances

Contributions to $\Delta a_{\prime\prime}^{had}$

Dominated by energies $\sqrt{s} < 2$ GeV

Contributions to $\Delta \alpha_{had}$

Contributions to $\delta \Delta \alpha_{had}$

ISR physics with BES-III

- Hadronic cross sections for a_{μ} and $\Delta \alpha$ required over wide energy range
- e+e- colliders at fixed (design) energy BEPC-II / BES-III: $\sqrt{s} = m_{\Psi(3770)} = 3.77 \text{ GeV}$ PEP-II / BABAR: $\sqrt{s} = m_{\Upsilon(4S)} = 10.58 \text{ GeV}$ DA Φ NE / KLOE: $\sqrt{s} = m_{\phi(1020)} = 1.02 \text{ GeV}$
- Use Initial State Radiation (ISR) from e^+ or e^- to decrease effective \sqrt{s}

Measure cross sections for radiative process, *e.g.* $e^+e^- \rightarrow \pi^+\pi^-\gamma$

with Radiator function *H*(*s*)

Different analysis types:

• Tagged analyis: ISR photon detected in EMC

Different analysis types:

- Tagged analyis: ISR photon detected in EMC
- Untagged analysis: ISR photon leaves detector Most probable case Photon emitted close to e⁺/e⁻ beam direction

Untagged ISR

044

BES-III and BEPC-II

BES-III and BEPC-II

• Beijing Electron-Positron Collider (BEPC-II)

• Institute for High-Energy Physics (IHEP)

- Beam energy: $E_e = 1.0 \dots 2.3 \text{ GeV}$ CMS energy: $\sqrt{s} = 2.0 \dots 4.6 \text{ GeV}$
- Energy spread: $5.16 \cdot 10^{-4}$
- Design luminosity: 10³³/cm²/s @ Ψ(3770)
- Achieved luminosity: $0.65 \cdot 10^{33}$ /cm²/s
- BES-III data taking since 2009

FB

BES-III detector systems

BES-III data taking

• J1	ıly 19, 2008	First e^+e^- collision event in BES-III
------	--------------	---

• 11/2008	$14 \cdot 10^6 \Psi(2S)$ events	
	for detector calibration	

- 2009 $106 \cdot 10^{6} \Psi(2S)$ events
 - $225 \cdot 10^6 J/\Psi$ events
- 2010 0.9 fb⁻¹ @ Ψ(3770)
- 2011 2.0 fb⁻¹ @ Ψ(3770)
 - 0.5 fb⁻¹ @ 4.10 GeV
- 2012 $0.4 \cdot 10^9 \Psi(2S)$ events
 - $1.0 \cdot 10^9 J/\Psi$ events
- 2013 1.0 fb⁻¹ @ 4.23 GeV
 - 0.8 fb⁻¹ @ 4.26 GeV
 - 0.5 fb⁻¹ @ 4.36 GeV
 - 0.3 fb⁻¹ @ 4.19 ... 4.42 GeV
 - 0.5 fb⁻¹ @ 4.01 GeV

BES-III data taking

• July 19, 2008	First <i>e</i> ⁺ <i>e</i> ⁻ collision event in BES-III
-----------------	--

- 11/2008 $14 \cdot 10^6 \Psi(2S)$ events for detector calibration
- 2009 $106 \cdot 10^{6} \Psi(2S)$ events
 - $225 \cdot 10^6 J/\Psi$ events

0.9 fb⁻¹ @ Ψ(3770)

• 2010

- 2011
 2.0 fb⁻¹ @ Ψ(3770)
 0.5 fb⁻¹ @ 4.10 GeV
- 2012 $0.4 \cdot 10^9 \Psi(2S)$ events
 - $1.0 \cdot 10^9 J/\Psi$ events
- 2013 1.0 fb⁻¹ @ 4.23 GeV

0.8 fb⁻¹ @ 4.26 GeV

- 0.5 fb⁻¹ @ 4.36 GeV
- 0.3 fb⁻¹ @ 4.19 ... 4.42 GeV
- 0.5 fb⁻¹ @ 4.01 GeV

World's largest set on J/Ψ , $\Psi(2S)$, $\Psi(3770)$

2.9 fb⁻¹ @ Ψ(3770) used for ISR physics

BES-III data taking

• July 19, 2008	First <i>e</i> ⁺ <i>e</i> ⁻ collision event in BES-III	
• 11/2008	$14 \cdot 10^6 \Psi(2S)$ events for detector calibration	
• 2009	106 · 10 ⁶ 平(2S) events	
	$225 \cdot 10^6 J/\Psi$ events	World's largest set on
• 2010	0.9 fb ⁻¹ @ Ψ(3770)	<i>J</i> /Ψ, Ψ(2S), Ψ(3770)
• 2011	2.0 fb ⁻¹ @ Ψ(3770)	 2.9 fb⁻¹ @ Ψ(3770) used for ISR physics
	0.5 fb ⁻¹ @ 4.10 GeV	
• 2012	$0.4 \cdot 10^9 \Psi(2S)$ events	
	$1.0 \cdot 10^9 J/\Psi$ events	
• 2013	1.0 fb ⁻¹ @ 4.23 GeV	
	0.8 fb ⁻¹ @ 4.26 GeV	
	0.5 fb ⁻¹ @ 4.36 GeV	• 3.1 fb⁻¹ @ XYZ region usable for ISR physics
	0.3 fb ⁻¹ @ 4.19 4.42 GeV	
	0.5 fb ⁻¹ @ 4.01 GeV	

ISR at BES-III, KLOE, B-factories

Image: Second secon

BES-III compared to KLOE:

- ⓒ Higher energy range covered up to \sqrt{s} ~ 3.5 GeV with BES max. \sqrt{s} ~ 1.0 GeV with KLOE
- ☺ Less Final State Radiation (FSR)
- \mathfrak{S} Worse statistics for $\pi^+\pi^-$ final state
- S Worse mass resolution Larger drift chamber of KLOE

BES-III compared to *B*-factories:

- Similar effective luminosities
 Smaller integrated luminosity
 More advantageous Radiator function
- ③ Untagged ISR measurements possible already at ~ 1 GeV
- 😑 Similar mass resolution

ISR measurements for 3 main channels contributing to a_{μ}^{had} :

) $\pi^+\pi^-$ cross section for $\sqrt{s} < 1$ GeV:

- Precise measurements of π form factor in ρ/ω region from BABAR & KLOE BABAR: *PRL 103, 131801 (2009)* KLOE: *PLB 670, 285 (2009), PLB 700, 102 (2011)*
- Both experiments claiming ~1% precision

Discrepancy between both experiments

Additional measurement for $\pi^+\pi^-$ cross section needed

BES-III programme on ISR

(2) $\pi^+\pi^-\pi^0$ cross section:

- VEPP-2000 precision data up to \sqrt{s} = 1.4 GeV
- High-statistics data from BABAR for $\sqrt{s} > 1.4$ GeV
- Large deviation of BABAR & DM2 results

Cross-check with BES-III ISR

$\pi^+\pi^-\pi^0\pi^0$ cross section :

- High statistics BABAR ISR results Huge improvement for $\sqrt{s} > 1.4$ GeV First measurement for $\sqrt{s} > 2.5$ GeV
- Competitive statistics at BES-III BABAR: 454 fb⁻¹ @ 10.58 GeV BES-III: 10 fb⁻¹ @ 3.77 GeV Advantageous BES-III radiator function

(3)

$e^+e^- \rightarrow \pi^+\pi^-\gamma$ analysis

Goal: Measurement of $R_{\pi\pi}$:

$$R_{\pi\pi} = \frac{\sigma(e^+e^- \to \pi^+\pi^-\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)} = \frac{N(e^+e^- \to \pi^+\pi^-\gamma)}{N(e^+e^- \to \mu^+\mu^-\gamma)}$$

Main issue: π/μ separation

- Using Artificial Neural Network (ANN)
- ANN trained with $\mu^+\mu^-\gamma$ and $\pi^+\pi^-\gamma$ MC samples
- Correct for efficiency differences between data and MC

with

Other analyis steps:

- μ , π tracking efficiency
- Photon efficiency
- Kinematic fit
- Unfolding of mass resolution
- FSR corrrection

Dedicated results for $\pi^+\pi^-\gamma$ analysis

 $\sigma(e^+e^- \to \pi^+\pi^-\gamma) = \frac{N(e^+e^- \to \pi^+\pi^-\gamma) - N_{\rm Bkg}}{\varepsilon \cdot \int L dt \cdot H}$

 $\mu^+\mu^-$ mass distribution – tagged ISR:

- BES-III data
 2.9 fb⁻¹ @ 3.770 GeV, tagged ISR
- Simulation PHOKHARA 7.0, $e^+e^- \rightarrow \mu^+\mu^-\gamma$
- Very good agreement
- Data & MC difference of

 $(0.5\pm0.3)\%$

 $\pi^+\pi^-$ cross section – extracted from ISR $\pi^+\pi^-\gamma$ data

- BES-III data
 2.9 fb⁻¹ @ 3.770 GeV, tagged ISR
- Wide energy range up to ~3 GeV
- No FSR correction yet

 $\pi^+\pi^-$ cross section – extracted from ISR $\pi^+\pi^-\gamma$ data

 $\pi^+\pi^-$ cross section – extracted from ISR $\pi^+\pi^-\gamma$ data

- BES-III data
 2.9 fb⁻¹ @ 3.770 GeV, tagged ISR
- Wide energy range up to ~3 GeV
- No FSR correction yet

Energy scan measurements with BES-III

Previous *R* measurements with BES

Image: SFB ∃

Energy scan experiments at BEPC:

- Pre-studies with BES-I τ mass data 12 continuum data points $\sqrt{s} \sim 3.55$ GeV HEP&NP 24, 609 (2000)
- Test run

6 data points $\sqrt{s} = 2.6 \dots 5.0 \text{ GeV}$ PRL 84, 594 (2000)

• Full scan

85 data points $\sqrt{s} = 2.0 \dots 4.8 \text{ GeV}$ PRL 88, 101802 (2002)

• *R* around Ψ(3770)

2 data points off-resonance 1 data point on-resonance *PLB 641, 145 (2006)*

• Improvements at 3 continuum points *PLB* 677, 239 (2009)

Statistical accuracy:3 ... 5%Systematic uncertainty:5 ... 8%

Major improvement on R

New energy scan experiments at BEPC-II:

• Phase 1

Energy range $\sqrt{s} = 2.0 \dots 4.5$ GeV about 10⁴ events per scan point about 3% systematic accuracy

Improvement on $\alpha_{em}(M_Z^2)$ by factor 2

• Phase 2

Energy range $\sqrt{s} = 2.0 \dots 3.0$ GeV about 10⁵ events per scan point high statistics Time-like *p*, *n*, Λ form factors *G*_{*E*}, *G*_{*M*}

Improvement on $|G_E|/|G_M|$ by factor 10

• Phase 3

Fine energy binning in charmonium region Determination of R_c

Charmonium spectroscopy

♣ SFB 볼

BES-III data taking during June 8-16, 2012:

- 4 energy points
 - $\sqrt{s} = 2.23 \text{ GeV} (\Lambda \Lambda \text{ threshold})$ $\sqrt{s} = 2.40 \text{ GeV}$ $\sqrt{s} = 2.80 \text{ GeV}$ $\sqrt{s} = 3.40 \text{ GeV}$
- Total integrated luminosity ~12pb⁻¹
- Useful information for BEPC-II performance at low energies
- Preparations for extended Phase 1 scan
- Data used to establish analysis chain

Studies of baryon form factors, fragmentation function, ...

Phase 2: Nucleon Form Factors

 $e^+e^- \rightarrow N\underline{N}$ cross section and time-like baryon form factors:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2 \beta_N}{4Q^2} \left(|G_M|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E|^2 \sin^2 \theta \right)$$

- Parametrised by electric and magnetic form factors G_E , G_M
- Energy region $\sqrt{s} \sim 2.0 \dots 2.5$ GeV
- Previous data on $|G_E|/|G_M|$ inconclusive
- Investigate cross section drop around ~2.15 GeV

Understanding the nature of charmonium resonances:

- All possible two-body decays of $\Psi(3770)$, $\Psi(4040)$, $\Psi(4160)$, $\Psi(4415)$ need to be considered
- High statistic data at peak positions required Measure the resonance parameters Determine cross section of exclusive decay channels

- Investigate possible broad resonance structures
- Mass region where some X, Y, Z particles are found
- Possible new resonances, which are not yet discovered?

Summary & Outlook

• Hadronic cross section measurements important for a_{μ} and $\Delta \alpha_{had}$

Precise data at low energies required ISR and Energy Scan measurements

• ISR physics programme at BES-III

2.9 fb⁻¹ @ $\Psi(3770)$, 3.1 fb⁻¹ @ XYZ region Highly competitive with other facilities Precise measurements of hadronic final states for $\sqrt{s} < 2$ GeV Significant contributions to a_{μ} and $\Delta \alpha_{had}$ expected

Energy Scan measurements at BES-III

Covering energy range from $\sqrt{s} = 2.0 \dots 4.5$ GeV Complementary to ISR programme Impact on $\Delta \alpha_{had}$ and baryon form factors Phase 1 (Mini *R* Scan) currently being analysed

- Hadronic cross section measurements important for a_{μ} and $\Delta \alpha_{had}$
 - Precise data at low energies required ISR and Energy Scan measurements
- ISR physics programme at BES-III

2.9 fb⁻¹ @ $\Psi(3770)$, 3.1 fb⁻¹ @ XYZ region Highly competitive with other facilities Precise measurements of hadronic final states for $\sqrt{s} < 2$ GeV Significant contributions to a_{μ} and $\Delta \alpha_{had}$ expected

Energy Scan measurements at BES-III

Covering energy range from $\sqrt{s} = 2.0 \dots 4.5$ GeV Complementary to ISR programme Impact on $\Delta \alpha_{had}$ and baryon form factors Phase 1 (Mini *R* Scan) currently being analysed

Thank you for your attention

Experimental value and Standard model predictions of $a_{\mu} = (g-2)_{\mu}$ BNL-E821

$$\Delta a = a_{\mu}^{
m exp} - a_{\mu}^{
m SM} \simeq 3.6 \sigma$$

Experimental value and Standard model predictions of $a_{\mu} = (g-2)_{\mu}$ BNL-E821

$$\Delta a = a_{\mu}^{
m exp} - {a_{\mu}^{
m SM}} \simeq 3.6 \sigma$$

• Standard model contributions to a_{μ}

$$egin{aligned} m{a}^{\mathsf{SM}}_{\mu} = m{a}^{\mathsf{QED}}_{\mu} + m{a}^{\mathsf{weak}}_{\mu} + m{a}^{\mathsf{had}}_{\mu} \end{aligned}$$

• $a_{\mu}^{
m had}$ needs experimental input $\sigma^{
m had} = \sigma(e^+e^-
ightarrow {
m hadrons})$

- Exp. uncertainty on $\sigma^{ ext{had}}$ limits SM precision
- Low-energy contributions important

$$a_{\mu}^{ ext{had}} = rac{1}{4\pi^3} \int\limits_{4m_{\pi}^2}^{\infty} ext{ds } K(s) \, \sigma^{ ext{had}}$$

Hadronic cross section data & $\alpha_{em}(s)$

Vacuum polarisation corrections

Running of $\alpha_{em}(s)$

$$\alpha_{\rm em}(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{\rm em}(s)}$$
 $\alpha_{\rm em}^{-1}(M_Z^2) = 128.962 \pm 0.014$

Davier, et al. (2010)

• Leptonic vacuum polarisation calculable within QED

 $\Delta \alpha_{\rm lep}(M_Z^2) = 314.97686 \cdot 10^{-4}$

- Hadronic vacuum polarisation not accessible in *p*QCD
- Dispersion integral relates $\Delta \alpha_{\text{em}}^{\text{had}}$ with σ^{had}

 $\Delta lpha_{\rm had}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4}$

Experimental *R* data essential up to ~5 GeV *p*QCD for higher energies

Radiator function *H*(s)
 PHOKHARA MC generator

Radiator function *H(s)* PHOKHARA MC generator

• Cross section $\sigma_{\pi\pi}(s)$ for non-radiative process $e^+e^- \rightarrow \pi^+\pi^-$

