Heavy Quark Spectroscopy at LHCb

Simon Eidelman Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia (for the LHCb Collaboration) Outline

- 1. X(3872)
- 2. $\psi(4160)$ in *B* decays
- 3. D and D_{sJ} mesons
- 4. Excited B_{sJ} mesons and $B_c^+ \to B_s^0 \pi^+$
- 5. Summary

LHCb Experiment – I

- LHCb is a single-arm forward spectrometer at $2 < \eta < 5$ for a study of particles with b or c quarks
- 934 members, 65 Institutes from 17 countries

	Year	\sqrt{s}, GeV	$\int Ldt$
	2010	7	37 pb
-	2011	7	1.0 fb

- 2012 8 2 fb
- High-precision tracking (silicon strip, straw drift tubes), dipole magnet 4Tm
- Excellent PID based on two RICH detectors
- Muon system (alternating layers of Fe and MWPC)

 $\sigma(pp \to X + \text{anything}) \mathcal{B}(X \to J/\psi \pi^+ \pi^-) = 5.4 \pm 1.3 \text{(stat)} \pm 0.8 \text{(syst)} \text{ nb},$ 2.5 < η < 4.5, 5 < p_T < 20 GeV/c, $\int Ldt = 34.7 \text{ pb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$

 $\psi(2S) \qquad \begin{array}{lll} 3998 \pm 83 & 3686.12 \pm 0.06 \pm 0.10 & 3686.114 \pm 0.007 \pm 0.016 \text{ (KEDR)} \\ \mathrm{X}(3872) & 565 \pm 62 & 3871.95 \pm 0.48 \pm 0.12 & 3871.61 \pm 0.16 \pm 0.19 \text{ (CDF)} \\ \mathrm{R. \ Aaij \ et \ al., \ Eur. \ Phys. \ J. \ C \ 72 \ (2012) \ 1972 } \end{array}$

Determination of X(3872) Quantum Numbers – I

A study of $B^+ \to X(3872)K^+$, $X(3872) \to J/\psi \pi^+ \pi^-$, $J/\psi \to \mu^+ \mu^$ produced in pp at $\sqrt{s} = 7$ TeV with $\int Ldt = 1$ fb⁻¹

About 38000 *B* candidates selected in $M(J/\psi\pi^+\pi^-K^+)$ in a $\pm 2\sigma$ range, a fit yields $5642 \pm 76 \ \psi(2S)$ events and $313 \pm 26 \ X(3872)$ (68% purity) R. Aaij et al., Phys. Rev. Lett. 110 (2013) 222001

Determination of X(3872) Quantum Numbers – II

Analysis in 5D angular space $\Omega \equiv (\cos \theta_X, \cos \theta_{\pi\pi}, \Delta \phi_{X,\pi\pi}, \cos \theta_{J/\psi}, \Delta \phi_{X,J/\psi})$

The 2^{-+} hypothesis is rejected with 8.4σ significance

Determination of X(3872) Quantum Numbers – III

- Projections onto five 1D and ten 2D binned distr. are all consistent with 1^{++}
- Correlations between $\cos \theta_X$ and $\cos \theta_{\pi\pi}$ increase the separation btw. 1⁺⁺ and 2⁻⁺

1⁺⁺ rules out X(3872) as a conventional $\eta_{c2}(1^1D_2)$ state, $\chi_{c1}(2^3P_1) \ c\bar{c}$ disfavored by X(3872) mass, Possible exotics: $D^{*0}\bar{D}^0$ molecule, 4-q state, $c\bar{c}$ -molecule mixture Precision Measurement of D Meson Mass Differences – I

3- and 4-body decays of D mesons produced in semileptonic b-hadron decays, pp collisions at $\sqrt{s} = 7$ TeV with $\int Ldt = 1$ fb⁻¹

M(D) measured in $D^0 \to K^+ K^- \pi^+ \pi^-$, small $Q = M(D) - \Sigma m_i$ R. Aaij et al., JHEP 1306 (2013) 065

Precision Measurement of D Meson Mass Differences – II

Precision Measurement of D Meson Mass Differences – III

Decay mode	Yield	Mass
$D^0 \to K^+ K^- \pi^+ \pi^-$	4608 ± 89	1864.74 ± 0.12
$D^0 \to K^+ K^- K^- \pi^+$	849 ± 36	1864.75 ± 0.15
$D^+ \to K^+ K^- \pi^+$	$68,787\pm321$	1869.50 ± 0.03
$D_s^+ \to K^+ K^- \pi^+$	$248,694 \pm 540$	1968.19 ± 0.03

 $M(D^+) - M(D^0) = 4.76 \pm 0.12 \text{ (stat) } \text{MeV}/c^2,$ $M(D_s^+) - M(D^+) = 98.68 \pm 0.03 \text{ (stat) } \text{MeV}/c^2,$

Modes 1,3,4 have large $Q \Rightarrow$ large systematics due to momentum scale (0.2-0.3 MeV) and are not used although the masses are consistent with PDG Precision Measurement of D Meson Mass Differences – IV

 $M(D^{0}) = 1864.75 \pm 0.15 \text{ (stat)} \pm 0.11 \text{ (syst)} \text{ MeV}/c^{2},$ $M(D^{+}) - M(D^{0}) = 4.76 \pm 0.12 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ MeV}/c^{2},$ $M(D_{s}^{+}) - M(D^{+}) = 98.68 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)} \text{ MeV}/c^{2}.$

	LHCb	Best previous	
Quantity	measurement	measurement	PDG fit
$M(D^0)$	1864.75 ± 0.19	$1864.85\pm0.18~\mathrm{CLEO}$	1864.86 ± 0.13
$M(D^+) - M(D^0)$	4.76 ± 0.14	4.7 ± 0.3 MARK2	4.76 ± 0.10
$M(D_s^+) - M(D^+)$	98.68 ± 0.05	98.4 ± 0.3 BaBar	98.88 ± 0.25

LHCb: $M(D_s^+) = 1968.19 \pm 0.20 \pm 0.14 \pm 0.08$ MeV,

PDG: $M(D_s^+) = 1968.49 \pm 0.32$ MeV.

 $E_B = M(D^0 D^{*0}) - M(X(3872)) = 0.09 \pm 0.28 \text{ MeV},$ so if X(3872) is a molecule, it is extremely loosely bound. Observation of a Resonance in $B^+ \to K^+ \mu^+ \mu^- - I$

 $B^+ \to K^+ \mu^+ \mu^-$ decay studied at $\sqrt{s} = 7$ and 8 TeV with $\int L dt = 3$ fb⁻¹

1830 candidates in the low recoil region $(m_{\mu^+\mu^-} > 3770 \text{ MeV})$ R. Aaij et al., Phys. Rev. Lett. 111 (2013) 112003.

Observation of a Resonance in $B^+ \to K^+ \mu^+ \mu^- - II$

Uı	nconstrained	$\psi(4160)$
B $[\times 10^{-9}]$	$3.9{}^{+0.7}_{-0.6}$	$3.5^{+0.9}_{-0.8}$
Mass [MeV]	$4191{}^{+9}_{-8}$	4190 ± 5
Width $[MeV]$	65^{+22}_{-16}	66 ± 12
Phase [rad]	-1.7 ± 0.3	-1.8 ± 0.3

The structure has a significance exceeding 6σ , its properties are consistent with the $\psi(4160)$

A hypothesis that the resonance is due to Y(4260) is disfavored by more than 4σ Using $\mathcal{B}(\psi(4160) \rightarrow e^+e^-) = (6.9 \pm 4.0) \times 10^{-6}$ and assuming lepton universality, $\mathcal{B}(B^+ \rightarrow \psi(4160)K^+) = (5.1^{+1.3}_{-1.2} \pm 3.0) \times 10^{-4}$ while $\mathcal{B}(B^+ \rightarrow \psi(4040)K^+) < 1.3 \times 10^{-4}$ at 90% CL

 J^P states with $P = (-1)^J (0^+, 1^-, 2^+, \ldots)$ – natural parity states D^* , $J^P = 0^-, 1^+, 2^-, \ldots$ – unnatural parity states D, 2 narrow 1P states well known, $D_1(2420), D_2^*(2460),$ 2 broad $L = 1, D_0^*(2400), D_1'(2430)$, found by Belle and BaBar

p.16/31

Study of D_J Mesons – V

Resonance	Final state	Mass (MeV)	Width (MeV)
$D_1(2420)^0$	$D^{*+}\pi^-$	$2419.6 \pm 0.1 \pm 0.7$	$35.2 \pm 0.4 \pm 0.9$
$D_2^*(2460)^0$	$D^{*+}\pi^-$	$2460.4 \pm 0.4 \pm 1.2$	$43.2 \pm 1.2 \pm 3.0$
$D_J^*(2650)^0$	$D^{*+}\pi^-$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$
$D_J^*(2760)^0$	$D^{*+}\pi^-$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$
$D_J(2580)^0$	$D^{*+}\pi^-$	$2579.5 \pm 3.4 \pm 5.5$	$177.5 \pm 17.8 \pm 46.0$
$D_J(2740)^0$	$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$
$D_J(3000)^0$	$D^{*+}\pi^-$	2971.8 ± 8.7	188.1 ± 44.8

Helicity angle $\theta_{\rm H}$ is the angle btw. π^- and π^+ from the D^{*+} in the $D^{*+}\pi^-$ rest frame Good agreement with expectations for $D_1(2420)^0$ (1⁺) and $D_2^*(2460)^0$ (2⁺)

S.Eidelman, BINP

p.20/31

Parity: natural – black, unnatural – red, $J^P = 0^-$ - blue

Parity: natural – black, unnatural – red, $J^P = 0^-$ - blue

S.Eidelman, BINP

p.22/31

Study of D_J Mesons – IX

Resonance	J^P (Function)	h parameter
$D_1(2420)^0$	$1^+(1+h\cos^2\theta_{\rm H})$	3.30 ± 0.48
$D_2^*(2460)^0$	$2^+(\sin^2\theta_{\rm H})$	_
$D_J^*(2650)^0$	Nat. $(\sin^2 \theta_{\rm H})$	_
$D_J^*(2760)^0$	Nat. $(\sin^2 \theta_{\rm H})$	_
$D_J(2580)^0$	Unnat. $(1 + h \cos^2 \theta_{\rm H})$	4.2 ± 1.3
$D_J(2740)^0$	Unnat. $(1 + h \cos^2 \theta_{\rm H})$	3.1 ± 2.2
$D_J(3000)^0$	Unnat. $(1 + h \cos^2 \theta_{\rm H})$	1.5 ± 0.9

Study of D_J Mesons – XI

Resonance	Final state	Mass (MeV)	Width (MeV)
$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm 0.1 \pm 0.1$	$45.6 \pm 0.4 \pm 1.1$
$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	74.4 \pm
$D_J^*(3000)^0$	$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5
$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm 0.2 \pm 0.6$	$48.6 \pm 1.3 \pm 1.9$
$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$
$D_J^*(3000)^+$	$D^0\pi^+$	3008.1 (fixed)	110.5 (fixed)

Study of D_J Mesons – XII

- Parameters measured and J^P confirmed for the $D_1(2420)^0$ in the $D^{*+}\pi^$ and the $D_2^*(2460)$ – in the $D^+\pi^-$, $D^0\pi^+$, $D^{*+}\pi^-$ final states
- Two natural parity states $D_J^*(2650)^0$ and $D_J^*(2760)^0$ observed in $D^{*+}\pi^-$
- In $D^+\pi^-$ and $D^0\pi^+$ the $D^*_J(2760)$ confirmed, but the $D^*_J(2650)$ region is inconclusive
- Two unnatural parity states $D_J(2580)^0$ and $D_J(2740)^0$ in $D^+\pi^-$
- $D_J(3000)^0$ with unnatural parity observed in $D^{*+}\pi^-$
- $D_J^*(3000)^0$ and $D_J^*(3000)^+$ observed in $D^+\pi^-$ and $D^0\pi^+$
- Partial agreement, although sometimes different parameters, with BaBar (P. del Amo Sanchez et al., Phys. Rev. D 82 (2010) 111101)
- Obtained results can be compared to quark model predictions

Orbitally excited $(L = 1) B_s^0$ states studied at 7 TeV with 1.0 fb⁻¹

R. Aaij et al., Phys. Rev. Lett. 110 (2013) 151803

Excited B_s^0 Mesons – II

Results of the fit to $m(B^+K^-) - m(B^+) - m(K^-)$

Parameter	Fit result, MeV	Best previous, MeV
$m(B_{s1}) - m(B^{*+}) - m(K^{-})$	$10.46 \pm 0.04 \pm 0.04$	$10.73 \pm 0.21 \pm 0.14$
$m(B_{s2}) - m(B^+) - m(K^-)$	$67.06 \pm 0.05 \pm 0.11$	$66.96 \pm 0.39 \pm 0.14$
$m(B^{*+}) - m(B^+)$	$45.01 \pm 0.30 \pm 0.23$	45.6 ± 0.8
$\Gamma(B_{s2}^*)$	$1.56 \pm 0.13 \pm 0.47$ –	
$\frac{\mathcal{B}(B_{s2}^* \to B^{*+} K^-)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)}$	$(9.3 \pm 1.3 \pm 1.2)\%$	_
$N(B_{s1} \to B^{*+}K^{-}) \qquad N$	$N(B_{s2}^* \to B^{*+}K^-) \qquad I$	$N(B_{s2}^* \to B^+ K^-)$
750 ± 36	307 ± 46	3140 ± 100

Excited B_s^0 Mesons – III

• Using $m(B^+)$, $m(B_{s1})$ and $m(B^{*+}) - m(B^+)$

 $m(B^*) = 5324.26 \pm 0.30 \pm 0.23 \pm 0.17 \text{ MeV},$ $m(B_{s1}) = 5828.40 \pm 0.04 \pm 0.04 \pm 0.41 \text{ MeV},$ $m(B^*_{s2}) = 5839.99 \pm 0.05 \pm 0.11 \pm 0.17 \text{ MeV}.$

- Observation of $B_{s2}^* \to B^{*+}K^-$ and $B_{s2}^* \to B^+K^-$ favors $J^P = 2^+$
- First measurement of the B_{s2}^* width
- $m(Z_b(10610)^+)$ and $m(Z_b(10650)^+)$ are 3.69 ± 2.05 MeV and 3.68 ± 1.71 MeV above the $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds

Using 1 fb⁻¹ at 7 TeV and 2 fb⁻¹ at 8 TeV, LHCb observes $B_c^+ \to B_s^0 \pi^+, \ B_s^0 \to D_s^- \pi^+ \text{ and } B_s^0 \to J/\psi\phi \text{ with } 7.7\sigma \text{ and } 6.1\sigma \text{ significance}$

This is the first observation of the weak decay of a *B* meson decaying to another *B*, with the *b* quark acting as a spectator R. Aaij et al., Arxiv:1308.4544, Phys. Rev. Lett.

Summary

- X(3872) is clearly selected both in continuum and B decays
- X(3872) quantum numbers are 1⁺
- Precise determination of D meson masses
- Various D_J observed with J^P analysis
- Excited B_s states studied
- Decay $B_c^+ \to B_s^0 \pi^+$ observed
- Due to the high cross section, thus huge statistics, and excellent performance LHCb has a high potential for spectroscopy studies

Backup Slides

LHCb Resolution

- Momentum: $\Delta p/p = 0.4\%$ at 5 GeV/c to 0.6% at 100 GeV/c
- ECAL (nominal): $1\% + 10\% / \sqrt{E[\text{GeV}]}$
- Impact parameter: 20 μ m for high- p_T tracks

• Invariant mass:

~ 8 MeV/ c^2 for $B \to J/\psi X$ with constraint on J/ψ mass, ~ 22 MeV/ c^2 for two-body *B* decays, ~ 100 MeV/ c^2 for $B_s \to \phi \gamma$, dominated by γ contribution

• Decay time: 45 fs for $B_s \to J/\psi \phi$ and for $B_s \to D_s \pi$

Results of the fit to the $J/\psi \pi^+\pi^-$ mass

Parameter	$\psi(2S)$	X(3872)
Signal events	3998 ± 83	565 ± 62
Mass, MeV	3686.10 ± 0.06	3871.88 ± 0.48
Resolution, MeV	2.54 ± 0.06	3.33 ± 0.08
Signal-to-noise ratio in $\pm 3\sigma$ window	1.5	0.15
Background events	73094 =	± 282

Systematic uncertainties on the $\psi(2S)$ and X(3872) masses

Category	Source of uncertainty	$\psi(2S)$	X(3872)
Mass fitting	Natural width		0.01
	Radiative tail	0.02	0.02
	Resolution		0.01
	Background model	0.02	0.02
Momentum calibration	Average momentum scale	0.08	0.10
	η dependence of momentum scale	0.02	0.03
Detector description	Energy loss correction	0.05	0.05
Detector alignment	Track slopes	0.01	0.01
Total		0.10	0.12

Determination of X(3872) Quantum Numbers

- About 38 000 candidates selected in a $\pm 2\sigma$ mass range around the B^+ peak in the $M(J/\psi K^+\pi^+\pi^-)$ distribution (signal purity of 89%)
- The $\psi(2S)$ fit in the 539.2–639.2 MeV range yields 5642 ± 76 signal (230 ± 21 background) candidates, $\sigma_{\Delta M} = 3.99 \pm 0.05$ MeV, signal purity of 99.2% in a $\pm 2.5\sigma_{\Delta M}$ region
- The X(3872) fit in the 723-823 MeV range yields 313 ± 26 (568 ± 31 background) X(3872) candidates, σ_{ΔM} = 5.5 ± 0.5 MeV, signal purity of 68% in a ±2.5σ_{ΔM} region
- The dominant background is from $B^+ \to J/\psi K_1(1270)^+$, $K_1(1270)^+ \to K^+\pi^+\pi^$ decays (from a study of the $K^+\pi^+\pi^-$ mass)

Systematic uncertainties on the D meson masses

Source of uncertainty	$M(D^0)$	$M(D^+) - M(D^0)$	$M(D_s^+) - M(D^+)$
Momentum scale	0.09	0.04	0.04
Energy loss correction	0.03	0.06	< 0.01
K^{\pm} mass	0.05	< 0.01	< 0.01
Signal model	0.02	< 0.01	< 0.01
Background model	< 0.01	< 0.01	< 0.01
Quadratic sum	0.11	0.07	0.04

Excited	B_s^0	Mesons
---------	---------	--------

$\mathcal{L}(D_{s1})$	$Q(B_{s2}^*)$	$m(B^{*+}) - m(B^+)$	$\Gamma(B_{s2}^*)$	$R^{B_{s2}^*}$
(MeV)	(MeV)	(MeV)	(MeV)	(%)
0.00	0.02	0.03	0.01	0.2
0.01	0.01	0.02	0.01	0.1
0.03	0.02	0.19	0.05	1.1
0.01	0.03	0.11	0.07	0.2
0.00	0.01	0.02	0.46	0.2
0.02	0.10	0.03	-	-
-	-	-	-	0.2
0.01	_	0.01	-	-
0.04	0.11	0.23	0.47	1.2
	(MeV) 0.00 0.01 0.03 0.01 0.00 0.02 - 0.01 0.04	$\begin{array}{c} (D g1) & \mbox{(MeV)} \\ \hline (MeV) & (MeV) \\ \hline 0.00 & 0.02 \\ 0.01 & 0.01 \\ 0.03 & 0.02 \\ 0.01 & 0.03 \\ 0.00 & 0.01 \\ 0.02 & 0.10 \\ \hline - & - \\ 0.01 & - \\ 0.04 & 0.11 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$