HADRONIC CROSS SECTION MEASUREMENT AT CMD3

Logashenko Ivan (for CMD-3 collaboration)

Budker Institute of Nuclear Physics, Novosibirsk

Novosibirsk State University

Outline

- VEPP-2000
- Detector CMD-3
- Pion form factor
- Multihadron final states
- Proton form factor

There was VEPP-2M

Energy range: 0.36 - 1.4 GeVLuminosity up to $5*10^{30} \text{ 1/cm}^2\text{s}$

Cross-section measurements at VEPP-2M

Hadronic cross-section measurements with precision from <1% to $\sim5\%$

From VEPP-2M to VEPP-2000

Main VEPP-2000 advantages:

- maximum energy up to 2 GeV
- higher luminosity

- 2001 VEPP-2M decommissioned
- 2010 first engineering run at VEPP-2000 collider with 2 new detectors: CMD-3 and SND

Meanwhile

New approach to measurement of the hadronic cross-sections was fully developed over last decade: ISR (Initial State Radiation), mainly by BaBar and KLOE.

 $d\sigma(e^+e^- \rightarrow \text{hadrons} + \gamma) = H(Q^2, \theta_{\gamma}) \cdot d\sigma(e^+e^- \rightarrow \text{hadrons})$

VEPP-2000 and the world

VEPP-2000

Maximum c.m. energy is 2 GeV, project luminosity is $L = 10^{32} 1/cm^2 s$ at $\sqrt{s} = 2$ GeV Unique optics, "round beams", allows to reach higher luminosity Experiments with two detectors, CMD-3 and SND, started by the end of 2010

9

Energy measurement

Starting from 2012, energy is monitored continuously using compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Detector CMD-3

CMD-3 vs CMD-2

CMD-3 advantages compared to its predecessor CMD-2:

- new drift chamber with two times better resolution, higher B field better tracking better momentum resolution
- thicker barrel calorimeter $(8.3X_0 \rightarrow 13.4 X_0)$ better particle separation
- LXe calorimeter measurement of conversion point for γ's measurement of shower profile
- TOF system particle id (mainly *p*, *n*)

1 - IP, 2 - drift chamber, 3 - BGO (680 crystals), 4 - Z-chamber, 5 - SC solenoid, 6 - LXe (400 liters), 7 - CsI (1152 crystals), 8 - magnet yoke, 9 - ringsolenoids, not shown - muon range system and TOF system

Currently the luminosity is limited by a deficit of positrons (from E > 650 MeV) and limited energy of the booster (from E > 825 MeV).

After upgrade in 2013-2014 we expect luminosity increase by up to factor 10 at maximum energy.

About 60 pb-1 collected per detector	
ω(782)	8.3 1/pb
$2E < 1 \text{ GeV} (\text{except } \omega)$	9.4 1/pb
$\varphi(1019)$	8.4 1/pb
2E > 1.04 GeV	34.5 1/pb

Physics program

- 1. Precision measurement of $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ exclusive approach, up to <1% for major modes
- 2. Study of hadronic final states:

 $e^+e^- \rightarrow 2h, 3h, 4h, \dots \quad h = \pi, K, \eta$

3. Study of vector mesons and theirs excitations:

 $\rho', \rho'', \omega', \phi', \dots$

- 4. Comparison of cross-sections $e^+e^- \rightarrow hadrons$ (T = 1) with spectral functions of τ -decays
- 5. Study of nucleon electromagnetic formfactor at threshold

$$e^+e^- \rightarrow p\bar{p}$$
, $n\bar{n}$

- 6. Measurement of the cross-sections using ISR
- 7. Study of higher order QED processes

Overall, we plan to collect $0.5 \div 1 \text{ 1/fb}$

The most challenging channel at CMD-3, because of the high precision. Reasons to measure pion form factor yet again:

- 1. In units of hadronic contribution to $(g 2)_{\mu}$: $\delta a_{\mu}^{HVP} = 0.6\%, \quad \Delta a_{\mu}(\exp - \text{theory}) \approx 4.0\% \pm 1.1\%$ $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ attributes to 73% of a_{μ}^{HVP} and to 0.45% to δa_{μ}^{HVP} .
- 2. New experiment at FNAL is expected to measure $(g 2)_{\mu}$ to 0.25%
- 3. There is good overall agreement between KLOE, BABAR, CMD-2 and SND, but there are local disagreements.

CMD-3 goal: measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with systematic accuracy of 0.3% and negligible statistical errors.

Means to improve systematics:

- Better $e/\mu/\pi$ separation thick multilayer calorimeter, high resolution DC
- Continuous beam energy monitoring
- High statistics allows to see systematic effects

$e^+e^- \rightarrow \pi^+\pi^-$: e, μ, π separation

$e^+e^- \rightarrow \pi^+\pi^-$: very preliminary results

$e^+e^- \rightarrow \pi^+\pi^-$: statistics and systematics

Main sources of systematics:

- $e/\mu/\pi$ separation 0.2% multiple ways to get detector response from data itself
- fiducial volume 0.1%
 - 2 independent systems, which can be used to determine fiducial volume
- beam energy 0.1% constant monitoring with Compton backscattering
- radiative corrections 0.1% proof from data

Many systematic studies rely on high statistics

Expected statistical error for 2013 data

$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ event

$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$

First result, published by CMD-3: Phys.Lett. B723 (2013) 82-89

Based on about 22 1/pb, 8000 events selected

Systematic error is 6%, main source is model dependence, will be reduced with more statistics

Preliminary studies of dynamics:

- Main production mode: $\rho(770) + 4\pi$ (phase space or $f_0(1370)$)
- Hint of energy dependent dynamics in 1.7-1.9 GeV energy range

Ongoing analysis, $\omega\eta$, $\varphi\eta$ intermediate states are seen

Statistical errors 1-2% per point, systematics under study Dynamics: confirm $a_1(1260)\pi$ dominance, $\rho f_0(600)$, $\rho f_0(980)$ are seen

$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$: first look

 $e^+e^- \rightarrow p\bar{p}$

Antiprotons identified by large dE/dx and by secondary particles.

There is dedicated poster presentation.

Angular distribution allows to extract $|G_E|^2$ and $|G_M|^2$: $|G_E|^2 \propto (1 - \cos^2 \Theta)$ $|G_M|^2 \propto (1 + \cos^2 \Theta)$

Need much more statistics!

Conclusion

- VEPP-2000 successfully started operation
- In 2011-2013 large amount of data collected in the whole energy range, exceeding total integral of VEPP-2M
- CMD-3 detector shows good performance
- Data analysis is ongoing, the first result is published
- We expect to produce new precise measurements of hadron production
- VEPP-2000 upgrade is upcoming, big boost in luminosity at high energies is expected