Hadron production in the ISR reactions at BaBar

E.Solodov for BaBar collaboration

Budker INP SB RAS, Novosibirsk, Russia

PhiPsi2013, Rome, Italy

Motivation of ISR study at BaBar

- Low energy e⁺e⁻ cross section dominates in hadronic contribution to a_u = (g-2)/2 of muon
- Direct e⁺e⁻ data in 1.4 2.5 GeV region have very low statistic
- New inputs for the hadron spectroscopy at low masses and charmonium region
- ISR at BaBar gives competitive statistic
- BaBar has excellent capability for ISR study
- All major hadronic processes are under study (green == published) $e^+e^- \rightarrow 2\mu\gamma$, $2\pi\gamma$, $2K\gamma$, $2p\gamma$, $2\Lambda\gamma$, $2\Sigma\gamma$, $\Lambda\Sigma\gamma$, $\Lambda_c\Lambda_c\gamma$ $e^+e^- \rightarrow 3\pi\gamma$

$$e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma, K^+K^-\pi^+\pi^-\gamma, K^+K^-\pi^0\pi^0\gamma, 2(K^+K^-)\gamma$$

$$e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\gamma, \ 3(\pi^+\pi^-)\gamma, \ K^+K^-2(\pi^+\pi^-)\gamma$$

$$\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma, \ \pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma, \ \pi^{+}\pi^{-}\pi^{0}\eta\gamma \ \dots$$

$$e^+e^- \rightarrow K^+K^-\pi^0\gamma, K^+K^-\eta\gamma \ (KK^*\gamma, \phi\pi^0\gamma, \phi\eta\gamma ...)$$

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0/\eta\gamma$$
, $K^+K^-\pi^+\pi^-\pi^0/\eta\gamma$

$$e^+e^- \rightarrow KK_S\pi\pi^0/\eta\gamma \ , \ K_SK_L \ , K_SK_L\pi^+\pi^-, \ K_SK_S\pi^+\pi^-(K^+K^-)$$

Some reactions are being updated to full BaBar data with ~500fb⁻¹ (talk by V. Druzhinin on $e^+e^- \rightarrow 2p\gamma$)

September, 2013

BaBar measurements summary

Recently published: $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

PRD 85 112009 (2012)

Based on 454 fb⁻¹ dataset (statistical uncertainties are shown) Our result is more precise than the current world average (<3% systematic error)

September, 2013

Recently published: $e^+e^- \rightarrow K^+K^-$

 $e^+e^- \rightarrow K_S K_I, K_S K_I \pi^+\pi^-, K_S K_S \pi^+\pi(K^+K^-)$

We present new preliminary results on the study of the processes:

 $\begin{array}{l} e^+e^- \rightarrow \ K_{\rm S}K_{\rm L} \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm L}\pi^+\pi^- \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm S}\pi^+\pi^- \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm S}K^+K^- \end{array}$

Based on 469 fb⁻¹ integrated luminosity.

K_S selection (in $\pi^+\pi^-$ decay)

A loop over all K_S candidates with ISR photon in 0.375 < Θ_{ISR} < 2.4 rad., E_Y >3 GeV, and select events with:

- Good quality K_S coming from IP and decays in 0.2-40 cm range.
- No electron ID for both charged tracks
- 0.472 < m(K_L) < 0.522 MeV/c²
- Both pions are in $0.375 < \Theta < 2.4$ radians good region of DCH

Additional requirement: 0 or 2 tracks with DocaXY < 0.2 cm

$e^+e^- \rightarrow \phi \gamma \rightarrow K_S K_L \gamma$ (without K_L detection)

Using energy-momentum conservation and detected K_S we determine K_L mass and direction:

$$m^{2}(K_{L}) = \left(E^{+} + E^{-} - E^{c}_{\gamma} - E_{K_{s}}\right)^{2} - \left(p^{+} + p^{-} - p^{c}_{\gamma} - p_{K_{s}}\right)^{2}$$

Using this events we can study K_L detection.

K_L mass using ϕ mass constraint

Background subtraction (1)

We apply additional cuts to the K_s mass and use side band events to estimate background (non- K_s) to calculated K_l mass. Events/0.001 GeV/c² Events/0.0015 GeV/c² 10 60 40 20 10 0.5 0.52 0.54 0.42 0.44 0.46 0.48 Ŏ.4 $m(K_{I}) GeV/c^{2}$ Events/0.0015 GeV/c² 40 10^{2} 20 0.51 0.48 0.49 0.5 0.52 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.47 $m(K_s) \text{ GeV/c}^2$ $m(K_{I}) \text{ GeV/c}^2$

We subtract (normalized) simulated signal events from K_S side band to obtain background distribution and fit it with $p_0+p_1^*x^8$. It counts only 0.8% of all selected events.

This background comes from the $\gamma\gamma$ events with conversion and mis-identified electrons

Background subtraction (2)

Major background comes from events with real K_S. We found negligible contribution from uds continuum background (e+e- -> $K_S K_L \pi^0(\eta)$ is very small if any, nothing is seen in $\gamma_{ISR}\gamma$ combinations).

Major contributions come from (cumulatively shown) e+e- -> $K_S K_L 2\pi^0 \gamma$, $K_S K_L \pi^0 \gamma$ and $\phi \eta \gamma$ ISR processes. We subtract (normalized) MC from data and fit the difference with "ARGUS" function. 4572 (5.6%) and 1586 (2.4%) for m_{KL} >0.47. We estimate ~0.5% systematic error to total number of events for background uncertainty.

We have very clean 81012±285 events for data (447434±669 MC). Calculated K_L mass strongly depends on ϕ mass used and K_S momentum.

How K_L cluster in Calorimeter looks like?

2. Search for K_L cluster using kinematic fit :

- Select (best) K_S (and cov. matrix)
- Select ISR photon (use alignment and resolution corrections)
- Loop over remaining clusters with E > 0.2 GeV to look for K_L candidate
- Use angular resolutions from Method 1
- Select event with best χ^2 for 3C fit in $K_S K_L \gamma$ hypothesis (P(K_L) float)

K_L EMC detection probability (2)

For events, selected by χ^2 <15 we calculate m(K_L) using ϕ mass (~36% efficiency).

After 814 background events subtraction we obtain 27925 ± 176 events for data and 164179 ± 405 events for MC. By comparing with numbers without K_L detection:

Data/MC = 0.9394 ± 0.0052 (0.6%) (includes also χ^2 cut efficiency) Used in all other analyses.

ϕ signal in e⁺e⁻ $\rightarrow K_S K_L$ reaction

Use events with $\chi 2 < 15$ and reconstructed parameters of K_S and K_L to calculate m(K_SK_L)

Fit to ϕ parameters (preliminary)

Region above ϕ : m(K_SK_L)>1.06 GeV

Huge background from processes with π^0 . This background is reduced by a requirement $E_{\gamma}(max) < 0.5 \text{ GeV}$ (gives ~3% data-MC difference in ϕ region).

Use χ^2 control region subtraction

Control region data events and signal contribution from MC (normalized by first bin and shape corrected by Data-MC difference – iteration procedure).

Signal region events with a background estimated from control region events after normalization. Shaded is MC background estimate from $\phi\eta$, K_SK_L π^0 ,

 $K_{S}K_{L}\pi^{0}\pi^{0}$.

$e^+e^- \rightarrow K_S K_L \text{ cross section}$

Is it **(**1680) ?

What we know about $\phi(1680)$

Energy dependence significantly increase width.

BaBar has measured $\phi(1680)$ parameters in major decay modes:

 $\phi(1680) \rightarrow K_S K\pi$, KKπ⁰ (K*K), $\phi\eta$, $\phi\pi\pi$, K_SK_L (preliminary) - still no info in PDG

$K_S K_L \pi^+ \pi^- \gamma$ event selection

- Select (best) K_S (use cov. matrix)
- Select ISR photon (use align. corrections and res.)
- Two tracks (only) with DocaXY<0.2 cm (not from K_S no K ID)
- No more tracks inside (1cm in R x 3 cm in Z) cylinder.
- Cycle over remaining photons with Eγ>0.2 GeV
- Best χ² for 3C fit (K_L momentum float)
- $\chi^2 > 100$ and $Im_{\gamma\gamma L}$ -0.135l>0.03 for the K_SK $\pi\pi^0\gamma$ hypothesis

$K_S K_L \pi^+ \pi^- \gamma$ selection

Huge background from events with π^0 . Cut E_{γ} max<0.5 GeV does not help much. Known background does not explain what we see – use observed side band for the background estimate.

$K_S K_L \pi^+ \pi^-$ mass distribution

$e^+e^- \rightarrow K_S K_L \pi^+ \pi^- \text{ cross section}$

No other measurements are available

 $\phi(1020)\pi^+\pi^-$ contribution

$K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ event selection

- Select 2 (best) K_S (use cov. matrix)
- Select ISR photon (use align. corrections and res.)
- Two tracks with DocaXY<0.1 cm (not from K_{S_1} 0-1 K ID for $\pi\pi$ or 2 K ID)
- No more tracks inside (1cm in R x 3 cm in Z) cylinder.
- Best χ^2 for 4C fit assuming $K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ hypotheses

 $K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ selection

$K_S K_S \pi^+ \pi^- (K^+ K^-)$ mass distribution

1479 events after background subtraction

129 events – assume no background (shaded: $\phi(1020)K_SK_S$)

$e^+e^- \rightarrow K_S K_S \pi^+\pi^- (K^+K^-)\gamma$ efficiency

Corrections: -6% (1%/track), -1.5% for ISR gamma

$e^+e^- \rightarrow K_S K_S \pi^+ \pi^- (K^+ K^-)$ cross sections

No other measurements are available

Some mass distributions (1)

Some mass distributions (2)

If we exclude $K^*(892)^+K^*(892)^-$ by $|m(K_S\pi) - m(K^*)| < 0.15 \text{ GeV/c}^2$ in both combinations:

Plus some number of $K^*(892)K_S\pi$ events

Some mass distributions (3)

$K_S K_L \pi^+ \pi^-$, $K_S K_S \pi^+ \pi^-$ signal decomposition

The cross sections comparison

K+K⁻ π + π + vs. K+K⁻ π ⁰ π ⁰ vs. K_SK_L π + π - vs. K_SK_S π + π -

Only K*(892)⁺K*(892)⁻ contribution can be compared using iso-spin relations:

 $N(K^{+}K^{-}\pi^{+}\pi^{-}) = 548 \pm 263$ eff= 22% (K*(892)⁰K*(892)⁰)

 $N(K^+K^-\pi^0\pi^0) = 1750 \pm 60$ eff= 8%

 $N(K_SK_L\pi^+\pi^-) = 2098 \pm 209$ eff= 5%

 $N(K_S K_S \pi^+ \pi^-) = 742 \pm 104$ eff= 4.5%

Iso-spin relations: ArXiv:1010.4180 (Davier)

 $N(K^{+}K^{-}\pi^{0}\pi^{0}) = \frac{1}{4} N(K^{0}\underline{K}^{0} \pi^{+}\pi^{-})$ $N(K_{S}K_{L}\pi^{+}\pi^{-}) = \frac{1}{2} N(K^{0}\underline{K}^{0} \pi^{+}\pi^{-})$ $N(K_{S}K_{S}\pi^{+}\pi^{-}) = N(K_{L}K_{L}\pi^{+}\pi^{-}) = \frac{1}{4} N(K^{0}\underline{K}^{0} \pi^{+}\pi^{-})$

Should be (after efficiency correction) :

2188 \pm 76 ~ 2098 \pm 209 ~ 1648 \pm 232 Some tension (~2 sigma) 30% 63% 50% of all events – how the rest are related? to g-2 relation?

J/ψ region

J/ψ intermediate states (Preliminary) For $K_S K_S \pi^+ \pi^-$ If K*(892)⁺ K*(892)⁻ are excluded: $Ev./0.04 GeV/c^2$ Events/0.05 GeV/c² Events/0.025 GeV/c 20 2.5 $\begin{array}{c} 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2 \quad 2.2 \quad 2.4 \\ m(K_{\rm S}\pi^{+-}) \ ({\rm GeV/c}^2) \end{array}$ 1 1.25 1.5 1.75 $\frac{1.8}{m(K_{S}K_{S})} = \frac{2.2}{(GeV/c^2)} = \frac{2.4}{2.4}$ 0.25 0.5 0.75 2.25 2.5 1.2 1.6 2 1.4 0 $m(\pi^{+}\pi^{-}) (GeV/c^{2})$ For K_SK_SK⁺K⁻ Events/0.0167 GeV/c² $m(K^+K^-)$ (GeV/c²) 1.5 N (ϕ f2') = 11 ± 4 N ($\phi K_{S}K_{S}$)= 20 ± 5 $m(K_SK_S)$ (GeV/c²) 1.5 1.2 1.4 1.6 1.8 43 $m(K_{S}K_{S}\phi(1020)) (GeV/c^{2})$

J/ψ decay results (Preliminary)

Measured Quantity	Measured value (eV)	This work Br (10 ⁻³) $\Gamma_{\rm ee}$ = 5.55 ± 0.14 keV	PDG 2012
$\Gamma_{ee} \bullet Br(J/\psi \rightarrow K_S K_L)$	1.13±0.34±0.11	$0.20 \pm 0.06 \pm 0.02$	0.146 ± 0.026 <mark>S=2.7</mark>
Γ _{ee} •Br(J/ψ -> K _S K _L π ⁺ π ⁻)	20.9±2.7±2.1	$3.7 \pm 0.6 \pm 0.4$	no entry
Γ _{ee} • Br(J/ψ -> K _S K _S π⁺π⁻)	9.3±0.9±0.5	1.68 ± 0.16 ± 0.08	no entry
Γ _{ee} • Br(J/ψ -> K _S K _S K⁺K⁻)	2.3±0.4±0.1	$0.42 \pm 0.08 \pm 0.02$	no entry
$\Gamma_{ee} \bullet Br(J/\psi \rightarrow K_S K_S \phi) \bullet Br(\phi \rightarrow K+K-)$	1.6±0.4±0.1	0.58 ± 0.14 ± 0.03	no entry
$ \Gamma_{ee} \bullet Br(J/\psi \rightarrow f2'\phi) \bullet Br(\phi \rightarrow K+K-) \\ \bullet B(f2' \rightarrow K_S K_S) $	0.88±0.34±0.04	0.45±0.17 ± 0.02	0.8 ± 0.4 <mark>S=2.7</mark>

 $\begin{array}{l} \mathsf{B}(\mathsf{J}/\psi \ \ -> \ \varphi \ f_2{}') = (0.48 \pm 0.18) \bullet 10^{-3} \ (\mathsf{MarkII}) \\ \mathsf{B}(\mathsf{J}/\psi \ \ -> \ \varphi \ f_2{}') = (1.23 \pm 0.026 \pm 0.20) \bullet 10^{-3} \ (\mathsf{DM2}) \end{array}$

Summary

- BaBar continues analysis of collected data and ISR study in particular
- Recently published results for $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, K^+K^- reactions have the best to date accuracy.
- New analysis of K_SK_L, K_SK_Lπ⁺π⁻, K_SK_Sπ⁺π⁻, K_SK_SK⁺K⁻ has been performed using 469 fb⁻¹
- The e⁺e⁻ -> $K_{s}K_{L}\pi^{+}\pi^{-}$, $K_{s}K_{s}\pi^{+}\pi^{-}$, $K_{s}K_{s}K^{+}K^{-}$ cross section were never studied before
- Using these cross sections we can reduce uncertainty in the muon g-2 calculation.
- J/ ψ decays to $K_S K_L \pi^+ \pi^-$, $K_S K_S \pi^+ \pi^-$, $K_S K_S K^+ K^-$ have been measured for the first time.
- PRD paper is in preparation.

Decomposition of $K^+K^-\pi^+\pi^-$ mass spectrum

J/ψ, ψ(2S) → 2(π⁺π⁻), K⁺K⁻π⁰π⁰, K⁺K⁻π⁺π⁻, 2(K⁺K⁻)

We measure

$$\mathcal{B}_{J/\psi \to f} \cdot \Gamma_{ee}^{J/\psi} = \frac{N_{J/\psi \to f} \cdot m_{J/\psi}^2}{6\pi^2 \cdot d\mathcal{L}/dE \cdot \epsilon_f(m_{J/\psi}) \cdot C}$$

Because of small systematic uncertainties in L (\sim 1%) and efficiency (\sim 3%) BaBar is competitive for measurements, where systematic errors dominate. (Plus new, never studied states!)

September, 2013

charmonium branching ratios

PRELIMINARY

 \rightarrow agrees with recent CLEO result (PRD 78, 011102 (2008))

September, 2013

J/ ψ region for $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$

/c ² //				
(D) GeV	TABLE XIII: Summary of the J/ψ are	nd $\psi(2S)$ branching fract	tion values obtained in thi	s analysis.
5000-00-	Measured Quantity	Measured Value (eV)	J/ψ or $\psi(2S)$ Branch This work	ning Fraction (10 ⁻³) PDG2010
suts	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+ K^- \pi^+ \pi^-}$	$37.94 \pm 0.81 \pm 1.10$	$6.84 \pm 0.15 \pm 0.27$	6.6 ± 0.5
	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+ K^- \pi^0 \pi^0}$	$11.75 {\pm} 0.81 {\pm} 0.90$	$2.12 \pm 0.15 \pm 0.18$	2.45 ± 0.31
500- 3.6 3.8	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+ K^- K^+ K^-}$	$4.00 {\pm} 0.33 {\pm} 0.29$	$0.72 {\pm} 0.06 {\pm} 0.05$	0.76 ± 0.09
	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^{*0} \overline{K}_{*}^{*0}} \cdot \mathcal{B}_{K^{*0} \to K^{+} \pi^{-}} \cdot \mathcal{B}_{\overline{K}_{*}^{*0} \to K^{-} \pi^{+}}$	$8.59 {\pm} 0.36 {\pm} 0.27$	$6.98 {\pm} 0.29 {\pm} 0.21$	6.0 ± 0.6
marie Aun.	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{I/\psi \to K^{*0} \overline{K^{*0}}} \cdot \mathcal{B}_{K^{*0} \to K^+ \pi^-} \cdot \mathcal{B}_{\overline{K^{*0}} \to K^- \pi^+}^2$	$0.57 {\pm} 0.15 {\pm} 0.03$	$0.23 \pm 0.06 \pm 0.01$	0.23 ± 0.07
	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{I/\psi \to \phi\pi^+\pi^-} \cdot \mathcal{B}_{\phi \to K^+K^-}$	$2.19 {\pm} 0.23 {\pm} 0.07$	$0.81 {\pm} 0.08 {\pm} 0.03$	0.94 ± 0.09
$3 3.2 3.4 3.6 3.8 m(K^+K^-\pi^+\pi^-) (GeV/c^2)$	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi \pi^0 \pi^0} \cdot \mathcal{B}_{\phi \to K^+ K^-}$	$1.36 {\pm} 0.27 {\pm} 0.07$	$0.50 {\pm} 0.10 {\pm} 0.03$	0.56 ± 0.16
6 ⁰ (, , , , , , , , , , , , , , , , , ,	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi K^+ K^-} \cdot \mathcal{B}_{\phi \to K^+ K^-}$	$2.26 \pm 0.26 \pm 0.16$	$1.66 \pm 0.19 \pm 0.12$	1.83 ± 0.24 ^a
× 150	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^+ \pi^-}$	$0.69 {\pm} 0.11 {\pm} 0.05$	$0.25 \pm 0.04 \pm 0.02$	$0.18 \pm 0.04 ^{b}$
5 (b)	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^0 \pi^0}$	$0.48 {\pm} 0.12 {\pm} 0.05$	$0.18 {\pm} 0.04 {\pm} 0.02$	$0.17 \ \pm 0.07 \ ^{c}$
ts/0.0	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi f_x} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_x \to \pi^+ \pi^-}$	$0.74{\pm}0.12{\pm}0.05$	$0.27 {\pm} 0.04 {\pm} 0.02$	$0.72 \ \pm 0.13^{\ d}$
	$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- \pi^+ \pi^-}$	$1.92{\pm}0.30{\pm}0.06$	$0.81{\pm}0.13{\pm}0.03$	0.75 ± 0.09
	$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- \pi^0 \pi^0}$	$0.60{\pm}0.31{\pm}0.03$	$0.25 \pm 0.13 \pm 0.02$	no entry
3.5 3.75	$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- K^+ K^-}$	$0.22 \pm 0.10 \pm 0.02$	$0.09 \pm 0.04 \pm 0.01$	0.060 ± 0.014
50	$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) \to \phi\pi^+\pi^-} \cdot \mathcal{B}_{\phi \to K^+K^-}$	$0.27 {\pm} 0.09 {\pm} 0.02$	$0.23 \pm 0.08 \pm 0.01$	$0.117 {\pm} 0.029$
	$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^+ \pi^-}$	$0.17 {\pm} 0.06 {\pm} 0.02$	$0.15 \pm 0.05 \pm 0.01$	$0.068 {\pm} 0.024$ ^e
$0 \frac{\left[\prod_{i=1}^{m} \prod_{j=1}^{m} \prod_{i=1}^{m} \prod_{j=1}^{$	${}^{a}\mathcal{B}_{J/\psi\to\phi\overline{K}K}$ obtained as $2\cdot\mathcal{B}_{J/\psi\to\phi K^+K^-}$. b Not corrected for the $f_0\to\pi^0\pi^0$ mode. c Not corrected for the $f_0\to\pi^+\pi^-$ mode. d We compare our $\phi f_x, f_x\to\pi^+\pi^-$ mode with $\phi f_2(127)$ ${}^{e}\mathcal{B}_{\psi(2S)\to\phi f_0}, f_0\to\pi^+\pi^-$	70).		
$\begin{array}{c} & (c) \\ & (c) \\$	Small systematic err major decay modes.	ors allow Bal	3ar to improve	BF for
Contombor 0010	ICD at DaDay 5	Colodov		
September, 2013	ion al Babar, E	2.501000V		4

PEP-II e+e- collider, Babar detector

cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$ **PRELIMINARY**

$\pi \pi \pi^{+}\pi$) [nb] CMD $\sigma(\mathbf{e}^+\mathbf{e}^- \to \pi^+\pi^-\pi^-\pi^-) [\mathbf{nb}]$ M3N PRELIMINARY CMD2 DM1 ND DM230 SND BaBar 2005 OLYA BaBar 2011 GG2 20 o(e⁺ 2015 10 J/ψ 2000 1500 1000 1.5 2.5ECM (MeV) $E_{CM}(GeV)$ • $< 1.4 \, \text{GeV}$: agreement with previous systematic uncertainties BABAR results, SND and CMD-2 data 2.4% in peak region (1.1-2.8 GeV) 11% (0.6-1.1 GeV) • > 1.4 GeV: highest precision (DM2, 20%) 4% (2.8-4.0 GeV) • $a_{\mu}^{had}(4\pi) = (13.35 \pm 0.10 \pm 0.52) \cdot 10^{-10}$ • hint for J/ψ (EPJ C66, 1 (2011)) • $a_{\mu}^{had}(4\pi) = (13.64 \pm 0.03 \pm 0.36) \cdot 10^{-10}$

φ(1020) mass

In MC we know all inputs and can create a "test" $m(K_L)$ distribution and compare with data. And the only free parameter is $\phi(1020)$ mass. By varying f mass we calculate χ^2 value by fitting data-MC difference with "ARGUS" function. We obtain:

 m_{ϕ} = 1019.483 ± 0.040 ± 0.036 MeV/C² : 24 keV – K⁰ mass uncertainty, 20 keV – K_s momentum, 18 keV – DCH-EMC mis-alignment.

How other distributions look like

Clean events with small systematic errors - 1% from KS, 0.5% ISR photon, 0.5% background, 0.6% from overlap effect.