A glance beyond the Standard Model: the MEG experiment

MEG's "5W" rule (outline)

WHY?

 role of μ→eγ and Lepton Flavor phenomena as a tool to explore New Physics (in brief)

WHO?

 "the MEG experiment, I suppose": a tiny collaboration of ~60 researchers from Italy, Japan, Russia, USA and Switzerland

WIHIEIRIE?

 At Paul Scherrer Institut, with the most intense DC muon beam worldwide

WIHAT?

signal, backgrounds and experimental challenges, final results
 WHEN?

- now and future, constraining even further NP with MEG_II

$\mu \rightarrow e\gamma$: a tool for New Physics

Lepton Flavor Violation (LFV) is strictly forbidden in "original" SM with vanishing ν masses

- modified SM to account for ν oscillations (neutral LFV process): $\mu \rightarrow e\gamma$ (and all charged LFV processes) still heavily suppressed, $\mathcal{BR}_{\mu \rightarrow e\gamma} \sim 10^{-5^{\circ}}$
- in proposed extensions of SM, charged LFV is enhanced: $\mu \rightarrow e\gamma$ rises up to (hardly) detectable levels $\mathcal{BR}_{\mu \rightarrow e\gamma} \sim 10^{-15} \div 10^{-11}$
 - hints on lepton sector, non-SM dark matter candidates and cosmology problems through lepton number violation;
 - μ>eγ and other cLFV processes can test "new Physics" happening at an energy scale far out of LHC capability;
 - $\mu \rightarrow e \gamma$ is the cleanest channel;
 - this remains a tough challenge for experimenters.

$\mu \rightarrow e\gamma$ and cLFV-mates

In the muon sector cLFV can be observed in:

- * $\mu \rightarrow e\gamma$, no neutrinos emitted (analog processes $\tau \rightarrow \mu\gamma$ and $\tau \rightarrow e\gamma$)
- * μ +eee muon to three electrons
- * μ N > e N muron conversion in murclei
- * anomalous muon magnetic moment

All of them can be modeled with a general effective Lagrangian of the form:

$$\mathcal{L}_{ ext{CLFV}} \;=\; rac{m_{\mu}}{(\kappa+1)\Lambda^2} ar{\mu}_R \sigma_{\mu
u} e_L \, F^{\mu
u} \,+\, h.c.$$

SPOILER!

This representation has some implications, as we will see...

$\mu \rightarrow e\gamma$ and cLFV-mates

MEG already eroded place for Beyond Standard Model theories

Especially, one can notice that with the best estimate for θ_{13} from recent neutrino oscillation experiments (Daya Bay, DoubleChooz...), the µ cLFV is favoured against τ channels!

Furthermore, MEG (and cLFV searches) are an ideal complement to LHC measurements looking for BSM effects, capable to explore higher energy region

MEG keywords

- High rate (rare events, large statistics...)
 - most intense continuous Muon Beam in the world (PSI)
 - stringent trigger/DAQ requirements
- Light and precise (lowest background possible)
 - light target, light Drift Chambers for positron tracking with minimum multiple scattering
 - thin magnet for reduced gamma interaction probability (high efficiency)
- Reliable over long time multi-year data-taking
 - Several calibration and monitoring methods
- Innovative detectors with outstanding performances
 - Liquid Xenon calorimeter,
 - Drift Chambers,
 - high-speed digitizers (DRS),
 - COBRA magnet,
 - high resolution time measurements in magnetic field
- Optimized for looking at the $\mu \rightarrow e \gamma$ channel
- Small (~60 researchers involved, from many countries)

The MEG crew

The experimental method

μ→eγ signature: photon and positron simultaneously emitted back-to-back and with equal energies in Center-Of-Mass system (μ decays at rest)

signal will be hindered by a huge background:

- "physics": $\mu \rightarrow e \nu \nu \gamma$ radiative decay with "endpoint" γ and e and low energy ν 's
- "accidental": e and γ from different sources but with compatible kinematics to the $\mu \rightarrow e \gamma$ one
- in our conditions $\mathcal{BR}_{phys} \sim 0.1 \mathcal{BR}_{acc}$ (dominant)

 $\mathcal{BR}_{(acc)} \sim (\mathbf{R}_{\mu})^2 (\delta \mathbf{E}_{\gamma})^2 \, \delta \mathbf{E}_{pos} \, \delta t \, (\delta \omega)^2$

- **squared rate** dependence
- ✓ crucial dependence on detector resolutions

A MEG overview

Muons are stopped in a THIN polyethilene TARGET from which a positron and a photon emerge.

The positron is bent in the COBRA magnetic field and detected with the positron tracker (DRIFT CHAMBERS, 16 <u>modules</u>) and the time detector (TIMING COUNTER: 2 <u>sectors with 15 scintillator bars each</u>).

The photon escapes COBRA and is detected in the LXE Calorimeter, a C-shaped 880 liters vessel equipped with 848 PMTs.

Detector Paper:

Eur. Phys. J. C 73 (2013) 2365

Winning the challenge

We have several constraints for the MEG detector given the extreme rarity of the searched events:

- * high statistics, need for detector efficiency and huge μ stop rate R μ = 3x10⁷ μ /s
- accidental bck rejection: ultimate resolutions
- trigger system and algorithms capable of selecting interesting events online with high live time and efficiency (total trigger rate ~10 Hz, from 2011 livetime is ~99%)

	2009	2010	2011	Note	
Gamma E [%]	1.89	1.90	1.65	Effective sigma (averaged on event depth)	20
Relative timing T _{ey} [ps]	160	130	140	RMD with $E_{\gamma} < 48 \text{ MeV}$	20
Positron E [keV]	306 (86%)	306 (85%)	304 (86%)	Michel edge, core resolution	
Positron θ [mrad]	9.4	10.4	10.6	Double turn	
Positron ϕ at zero [mrad]	8.7	9.5	9.8	Double turn	
Positron Z/Y [mm]	2.4/1.2	3.0/1.2	3.1/1.3	Double turn, Y core resolution	
Gamma position [mm]	5 (transvers) 6 (depth)	5 (transverse) 6 (depth)	5 (transverse) 6 (depth)	π^0 measurement with lead collimators	
Trigger/DAQ efficiency [%]	91/75	92/76	97/96		
Gamma efficiency [%]	63	63	63	π^0 sample	
Positron efficiency [%]	43	36	36	From MC	

Calibrate at a glance

Calibrations: effects!

Reconstructed energy scale in the LXe detector before and after the correction evaluated from periodic calibration

Final stability is within 0.2% to be compared with energy resolution of $1,6\div1,9\%$

RED: RMD edge estimate Black: CW data

muon counting

muon counting stopping

Data Analysis

In order to combine the 5 observables:

 $\overrightarrow{x} = (E_{\gamma}, E_{\mathrm{e}}, t_{\mathrm{e}\gamma}, \phi_{\mathrm{e}\gamma}, \theta_{\mathrm{e}\gamma})$

we used a **Blind Box** approach to extract all useful information before looking at the rare events searched.

The Blind Box definition was based on the photon energy and the relative positron-photon time. The analysis was developed on events outside the BB and the obtained resolutions were used to give Probability Density Functions for signal-like events (d-functions for all observables, convoluted with detector respons).

A Maximum Likelihood fit, to determine

- ✓ number of signal events N_{sig}
- \checkmark number of radiative N_R m->eVVY
- \checkmark number of accidental N_{λ} bck

expected in the blind box, is then performed:

$$\mathcal{L}(N_{\rm sig}, N_{\rm R}, N_{\rm A}) = \frac{e^{-N}}{N_{\rm obs}!} e^{-\left(\frac{(N_{\rm R} - \langle N_{\rm R} \rangle)^2}{2\sigma_{\rm R}^2} + \frac{(N_{\rm A} - \langle N_{\rm A} \rangle)^2}{2\sigma_{\rm A}^2}\right)} \prod_{i=1}^{N_{\rm obs}} (N_{\rm sig} S(\vec{x}_i) + N_{\rm R} R(\vec{x}_i) + N_{\rm A} A(\vec{x}_i))$$

normalization

Opening the Blinding Box

Opening the Blinding Box

PDFs and Likelihood Fit

(0.4 MeV

Gamma Energy (MeV)

Each PDF obtained from different processes:

- relative time: fit of Radiative Muon Decay peak (scaled for different photon energy)
- positron energy: fit of Michel Edge for BCK, δ-function convoluted with experimental resolution for signal (Mott scattering and double turn method)
- gamma energy: Background spectrum from time sidebands, Radiative Muon Decay theoretical shape, detector response to π° 55 MeV Photon (signal)
- relative angles from double turns tracks in spectrometer
 - Sideband Fit before the unblinding to estimate expected number of bck events

Result: a new Upper Limit

A factor 20 better than pre-MEG limit (MEGA 2002), 4 times better than MEG 2009-2010

Slightly better than the expected sensitivity (7.7×10^{-13}) evaluated with Toy MC

Confidence interval of N_{sig} **evaluated in a** Feldman-Cousins fashion taking into account PDF uncertainties and fluctuations of signal and background.

Normalization: through the use of independent unbiased trigger on reference events (Michel decays) we can estimate total number of detected muons by applying the same cuts. A comparison with RMD data shows consistent values for the *k*factor..

Next: why a MEG upgrade?

- MEG saturates its sensitivity with 2013 run
- interesting to go further by another order of magnitude
- needed a re-design of the detector to gain this (MEG is limited by current performances)
- quick process: we identified weak points of MEG detector and our expertise allows to implement modifications "easily"
- short time scale compared to other cLFV experiments
- competitive tool for New Physics for low values of \hat{k} in the "effective Lagrangian":

$$\mathcal{L}_{ ext{CLFV}} \;=\; rac{m_{\mu}}{(\kappa+1)\Lambda^2} ar{\mu}_R \sigma_{\mu
u} e_L \, F^{\mu
u} \,+\, h.c.$$

• as already stated, growing interest is pinned on the μ ->e γ decay by large θ_{13} value

Upgrade concept

MEG_UP is going to implement several improvement in the experimental apparatus:

- 1. higher beam rate (more statistic)
- 2. thinner target (less background)
- more points for a better track reconstruction (improve positron resolutions)
- 4. shorter path from last DC point to Timing Counter (time resolution)
- 5. segmented Timing Counter, for better matching with DC volume and multi-hit exploitation
- 6. different Calorimeter shape within the existing cryostat
- 7. finer inner face granularity with new readout devices (SiPM) for better energy reconstruction and pile-up rejection

DC upgrade

A unique cylindrical volume, with stereo wires

- full active volume, less dead layers giving multiple scattering problems
- ♦ extends closer to the target for better vertex reconstruction
- high bandwidth readout with fast
 counting gas: possibility to exploit
 Cluster Counting and Timing for
 better single-hit performances
- higher rate means severe constraints on central wires: demonstration of a 3 years operation for the worst case (inner cell, central position) by means of an accelerated ageing test

DC R&D examples

different prototypes prepared, each dedicated to different studies:

- Long prototype for signal/ noise issues and wiring testes
- small prototype with a single cell for ageing measurements
- three-tube and three-cells configuration for hit resolution
- dedicated preamplifier developed for the upgraded detector
- facility for high precison tracking (Cosmic Ray telescope) for detector resolution and alignment procedures studies

XEC upgrade

In the existing calorimeter, due to 2" size of PMTs:

- spatially close photons cannot be disentangled: residual
 Pile-up
- poorer energy resolution for shallow events (conversion depth < 3 cm)</p>
- Ilimit on conversion point resolution (angular matching)

Main imrovement:

- substitute inner face PMT with 12x12mm² SiPMs/G-APDs/ MPPCs (name depends on brand!)
- R&D for VUV detection, after-pulsing and linearity issues, mechanical coupling to the structure, feedthroughs....

TC upgrade

Positron timing limited by:

- Long path from the last tracker point to the TC, with much material (structures, cabling, gas system, DC PCB)
- Iarge thickness of TC bars needed for photo-statistic to limit PMT jitter contribution: large energy loss of positrons with path fluctuation

furthermore, with the new tracker, the room for TC is smaller

- solution: replace large bars (4x4x80 cm³) with small scintillator counters read out with SIPM
- possible to use multiple hit lowering the time resolution thanks to high multiplicity
- ♦ optimize the orientation of each pixel independently
- the TC structure is just outside the tracking volume!

A new DAQ

For a continuous beam experiment, there is a livetime to online selection efficiency tradeoff

- solved in MEG for the current beam intensity: up to 99% live time with >95% efficiency
- not sufficient in MEG_UP due to higher beam rate
- \diamond moreover, MEG_UP has an higher number of channels to be acquired

Need to rethink the DAQ structure

- ♦ digitizer: DRS sampling chip developed at PSI, working up to 5 GHz
- existing trigger system: dedicated boards with 100 MS/s sampling speed and FPGA processing of trigger algorithms
- \diamond a bottleneck is the limited communication speed between the two class of boards
- Our solution: have one type of board capable of handling complex trigger decisions: the WAVEDREAM concept

Synthesizing MEG_UP

MEG_UP is intended to give an order of magnitude better constraint on the μ ->e γ Branching Ratio in a few years

- re-design of full detector based on existing know-how
- new concept for DAQ: board with integrated high-speed digitizer and trigger
- fast R&D process (3 years study and construiction, 3 years data taking)
- to be compared with ambitions and timescales of other muon-based
 Lepton Flavor searches e.g. mu2e,
 Comet...

COMET ph.1

COMET ph.2 (2021)

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e ⁺ vertex (mm) Z/Y(core)	2.4 / 1.2	1.6 / 0.7
γ energy (%) (w <2 cm)/(w >2 cm)	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e+	40	88

In conclusion...

The MEG experiment had a successful run in the period 2009-2013, with a total number of $\sim 1.5 \ge 10^{13}$ accumulated muons.

The current best limit, using only 2009-2011 data, is already 20 times better than the previous limit from MEGA and 4 times better than the first released MEG limit.

With the current detector there is no room to improve the limit with further data taking after 2013: so we envisage an upgrade:

- new positron tracker and time detector
- modification of the photon detector
- major improvements in the DAQ system
- higher beam intensity

The upgrade will be able to detect the $\mu \rightarrow e\gamma$ decay with an order of magnitude better sensitivity in a timely fashion.

THANK YOU FOR THE ATTENTION!

spares

sensitivity

