Measurement of the hadronic cross section at KLOE/KLOE-2

Anthony Palladino (for the KLOE/KLOE-2 collaborations) Laboratori Nazionali di Frascati

International workshop on e^+e^- collisions from ϕ to ψ

Rome, Italy

09 September 2013

Outline

- Hadronic contribution to $(g-2)_{\mu}$
- KLOE measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$:

- Small (photon) angle measurements (KLOE05, KLOE08)
- Large (photon) angle measurement (KLOE10)
- Evaluation of $a_{\mu}^{\pi\pi}$ and comparison with CMD-2/SND/BaBar
- New measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma)) \leftarrow using \pi\pi\gamma/\mu\mu\gamma$ ratio (KLOE12) PLB 720 (2013) 336–343
 - Comparison with KLOE08, KLOE10 and evaluation of $a_{\mu}^{\pi\pi}$
 - *Preliminary* combination of KLOE08, KLOE10, KLOE12 results

Muon anomaly

- Long established discrepancy (>3σ) between SM prediction and BNL E821 exp.
- Theoretical error δa_{μ}^{SM} (~6x10⁻¹⁰) dominated by HLO VP ([4–5]x10⁻¹⁰) and HLbL ([2.5–4]x10⁻¹⁰).

A **twofold** improvement on δa_{μ}^{SM} from 2001 (thanks to new e⁺e⁻ measurements)!

• Experimental error $\delta a_{\mu}^{EXP} \sim 6x10^{-10}$ (E821). Plan to reduce it to $1.6x10^{-10}$ by the new g-2 experiments at FNAL and J-PARC.

 $a_{\mu}^{\rm SM}$ compared to BNL world av.

 $a_{\mu} = \frac{(g_{\mu} - 2)}{2}$

 $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (27.6 \pm 8.1) \cdot 10^{-10}, \sim 3.4\sigma$ Nyffler) In 2001 $a_{\mu}^{\text{EXP}} \cdot a_{\mu}^{\text{TH}} = (23\pm 16) \cdot 10^{-10}$ a_{μ}^{HLO} :

$$a_{\mu} = \frac{(g_{\mu} - 2)}{2}$$

L.O. Hadronic contribution to a_{μ} can be estimated by means of a dispersion integral:

$$n_{\gamma} (H) (h_{\gamma}) (h_{H}) (h_{H})^{2} (h$$

- K(s) = analytic kernel-function

- above a sufficiently high energy value, typically 2...5 GeV, we can use *pQCD*

Input:

- a) hadronic electron-positron cross section data (G.dR 69, E.J.95, A.D.H.'97,....)
- b) hadronic τ decays, which can be used with the help of the CVC-theorem and an isospin rotation (plus isospin breaking corrections)

(Alemany, Davier, Hoecker '97)

ISR: Initial State Radiation

Joseph Klok

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr})

\rightarrow EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 $\Rightarrow \sim 3\sigma$ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

DAΦNE: A φ-Factory in Frascati (near Rome)

e^+e^- collider with $\sqrt{s} = m_{\phi} \approx 1.0195$ GeV

Integrated Luminosity

Peak Luminosity $L_{\text{peak}} = 1.5 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

KLOE05 measurement (PLB606(2005)12) based on 140pb ⁻¹ of 2001 data	KLOE10 measurement (PLB700 (2011)102) based on 233 pb ⁻¹ of 2006 data (at 1 GeV, different event selection)
KLOE08 measurement (PLB670(2009)285) was based on 240pb ⁻¹ of 2002 data	KLOE12 measurement (PLB720(2013)336) based on 240 pb ⁻¹ of 2002 data (from ππγ/μμγ ratio)

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$

Excellent momentum resolution

KLOE Detector

Electromagnetic Calorimeter

 σ_{τ} = 54 ps / $\sqrt{E}(\text{GeV}) \oplus 100$ ps

(Bunch length contribution subtracted from constant term) **Excellent timing resolution**

Pb / scintillating fibers (**4880 PMTs**) **Endcap - Barrel - Modules** S.C. COIL Barrel EMC DRIFT CHAMBER 7 m6 m

a) Photons at small angles $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

→ Photon momentum from kinematics:

 $\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$

Pion tracks at large angles

 $50^{\circ} < \theta_{\pi} < 130^{\circ}$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Event Selection: Small Angle (SA)

KLOE

Event Selection: Large Angle (LA)

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

→ Photon momentum from kinematics:

 $\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

b) Photons at large angles

 $50^\circ < \theta_{\gamma} < 130^\circ$

\rightarrow Photon is explicitly measured in the detector!

- Threshold region accessible
- Lower signal statistics
- Increased contribution from FSR and $\phi \rightarrow \pi^+\pi^-\pi^0$ (use off-peak data)

Luminosity:

KLOE measures L with Bhabha scattering

 $\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$

F. Ambrosino et al. (KLOE Coll.) Eur.Phys.J.C47:589-596,2006

 $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

Generator used for $\sigma_{_{eff}}$: **BABAYAGA** (Pavia):

C. M.C. Calame et al., NPB758 (2006) 22

New version (**BABAYAGA@NLO**) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity	
Theory	0.1 %
Experiment	0.3 %
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%	

Luminosity:

KLOE08: Small Angle (\sqrt{s} **= 1020 MeV)**

Phys. Lett. B 670 (2009) 285

Systematic errors on $a_{\mu}^{\pi\pi}$:

μ
negligible
0.3%
0.2%
negligible
0.3%
0.1%
0.2%
negligible
negligible
0.1%
0.2%
0.3%

experimental fractional error on $a_{\mu} = 0.6$ %

	•
FSR treatment	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

 $\sigma_{\pi\pi}$, undressed from VP, inclusive of FSR as function of $(M^0_{\pi\pi})^2$

 $\sigma_{ee \to \pi\pi}(s)K(s)ds = \int_{\mu}^{\pi\pi} (0.35 - 0.95 \text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{syst}} \pm 2.3_{\text{tl}}$ Palladino - International workshop on e+e- collisions from phi to psi - 9 September 2013

KLOE10: Large Angle (\sqrt{s} = 1000 MeV)

Phys. Lett. B 700 (2011) 102

Comparison of results: KLOE10 vs KLOE08

15

KLOE08 result compared to KLOE10:

Fractional difference:

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional total error of 1.2%

Comparison of results: KLOE10 vs **CMD-2/SND**

CMD and SND results compared to KLOE10: Fractional difference

SND: M.N. Achasov et al., J. Exp. Theor. Phys. 103, 480 (2006) CMD-2: R.R. Akhmetshin et al., PLB648, 28 (2007)

band: KLOE10 error

Below the ρ peak good agreement with CMD-2/SND. Above the ρ peak KLOE10 slightly lower

Comparison of results: KLOE10 vs **BaBar**

Contraction of the second seco

BaBar results compared to KLOE10: Fractional difference

KLOE12: New $\sigma_{\pi\pi}$ measurement from $\pi\pi\gamma/\mu\mu\gamma$

Phys. Lett. B 720 (2013) 336–343

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion

over muon yields (instead of using absolute normalization with Bhabhas).

Many systematic effects drop out:

- radiator function
- int. luminosity from Bhabhas
- Vacuum polarization

Data Sample:

- 239.2 pb⁻¹ of 2002 data (the same used in KLOE08 analysis)
- photon at small angle
- 0.87 Million $\mu\mu\gamma$ events
- 3.4 Million $\pi\pi\gamma$ events

KLOE12: New $\sigma_{\pi\pi}$ measurement from $\pi\pi\gamma/\mu\mu\gamma$

Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$

 \Box Important to get a good π/μ separation, especially in the ρ region where $\sigma_{\pi\pi}/\sigma_{\mu\mu}$

- Obtained ~1% uncertainty in the muon selection
- $-\pi/\mu$ separation cross-checked with three different methods (M_{Track} fit,

Kinematic fit, cut on σ_{MTrack})

 $\Box \mu\mu\gamma$ (and $\pi\pi\gamma$) efficiencies (Tracking, Triggering, PID) done on measurement data \Box Excellent measurement/simulation agreement for many kinematic variables: M_{Track},

tracks, and γ polar angle, etc...

$\mu\mu\gamma$ cross section: meas/simu comparison

• Consistency check of Radiator function, Luminosity, etc...

KLOE12 result: $|\mathbf{F}_{\pi}|^2$ and comp. with **KLOE08**

			() KLOS
	KLOE08	KLOE12	50
Syst. errors (%)	$\Delta^{\pi\pi}a_{\mu}$ abs	$\Delta^{\pi\pi}a_{\mu}$ ratio	45 = 45 = 45 = 40 • KLOE12
Reconstruction Filter	negligible	negligible	* KLOE08
Background subtraction	0.3	0.6	$40 = \frac{33}{30}$ + KLOE12
Trackmass	0.2	0.2	
Particle ID	negligible	negligible	$35 - 25 - 0.55 - 0.575 - 0.6 - 0.625 - 0.65 $ \Leftrightarrow KLOE08
Tracking	0.3	0.1	
Trigger	0.1	0.1	
Unfolding	negligible	negligible	
Acceptance $(\theta_{\pi\pi})$	0.2	negligible	
Acceptance (θ_{π})	negligible	negligible	
Software Trigger (L3)	0.1	0.1	
Luminosity	$0.3 \ (0.1_{th} \oplus 0.3_{exp})$	-	15
\sqrt{s} dep. of H	0.2	-	
Total exp systematics	0.6	0.7	
Vacuum Polarization	0.1	-	
FSR treatment	0.3	0.2	5
Rad. function H	0.5	-	$(\mathbf{M}_{\pi\pi}^{0})^2 \ [\mathrm{GeV}^2]$
Total theory systematics	0.6	0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Total systematic error	0.9	0.7	 Good agreement btw the two
			moscurements especially in the e

	$a^{\pi\pi}_{\mu}(0.35 - 0.95 \text{ GeV}^2) \times 10^{10}$
KLOE12	$385.1 \pm 1.1_{\rm stat} \pm 2.7_{\rm sys+theo}$
KLOE08	$387.2 \pm 0.5_{\text{stat}} \pm 3.3_{\text{sys+theo}}$

• These two measurements are not independent ($\pi\pi\gamma$ sample is the same)...

A. Palladino - International workshop on e+e- collisions from phi to psi - 9 September 2013

0.9

Comparison of results: KLOE12 vs KLOE10

KLOE12 result compared to KLOE10:

Fractional difference:

band: KLOE10 error

Excellent agreement between these two independent measurements!

Analysis	$a^{\pi\pi}_{\mu}(0.35 - 0.85 \text{ GeV}^2) \times 10^{10}$
KLOE12	$377.4 \pm 1.1_{\mathrm{stat}} \pm 2.7_{\mathrm{sys+theo}}$
KLOE10	$376.6 \pm 0.9_{\text{stat}} \pm 3.3_{\text{sys+theo}}$

Preliminary combination of KLOE08,10,12

by Stefan E. Müller

 $a_{\mu} = (g_{\mu} - 2)/2$:

Theoretical predictions compared to the BNL result

- Discrepancy between a_{μ}^{SM} and a_{μ}^{EXP} at the 3.5 σ level is confirmed by the KLOE measurement of the ratio of cross sections $\pi\pi\gamma/\mu\mu\gamma$
- KLOE12 is in agreement with previous KLOE measurements and confirms this discrepancy.
- Previous tension between $e^+e^$ and τ data is reduced by 1σ [F. Jegerlehner et al., Eur.Phys.J. C71 (2011) 1632, ρ - γ treatment]

Results from new g-2 experiments (at FNAL and JPARC) will be very interesting!

* Our extrapolation based on DHMYZ10

Conclusion

- During the last 10 years KLOE has performed a series of precision measurements with ISR which confirmed a 3σ discrepancy between a_{μ}^{SM} and the value measured at BNL
- The published measurements (KLOE05, KLOE08, KLOE10), normalized to Bhabha events, have allowed us to measure $a_{\mu}^{\pi\pi}$ in the region below 1 GeV with ~1% total error
- A new measurement (KLOE12) of $|F_{\pi}|^2$ from the $\pi\pi\gamma/\mu\mu\gamma$ ratio (based on 240 pb⁻¹) with 0.7% systematic error has been published (PLB720 (2013) 336–343)
- It doesn't rely on specific theoretical input (like luminosity and radiator function) and allows a stringent cross check of the published measurements with comparable systematic error
- Good agreement for $\mu\mu\gamma$ cross section with NLO QED calculation (PHOKHARA MC) and for $|F_{\pi}|^2$ with previous KLOE measurements (confirming 3σ discrepancy on a_{μ}) A. Palladino - International workshop on e+e- collisions from phi to psi - 9 September 2013

 Still more than 1.5 fb⁻¹ of KLOE data on tape. This would represent a factor ~4 improvement in statistics.

 A new round of data taking with KLOE-2 upgraded detector is expected to begin Fall 2013.

SPARE SLIDES

π/μ separation: control of $\pi\pi\gamma$ M_{TRK} tail

- A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6
 GeV2 (ρ peak) where π/μ ~10.
- ππγ % background to μμγ signal (MTRK<115 MeV) is ~15% at ρ peak
- $\pm \pi \pi \gamma$ MTRK tail in the μμγ region must be well under control.
- $\Box \pi \pi \gamma$ MTRK tail tuned using
 - $\phi \rightarrow \pi + \pi \pi 0$ control sample.
- December 2019 Excellent agreement on MTRK (ππγ and μμγ) distributions

MTrk [MeV]

π/μ separation: control of $\pi\pi\gamma$ MTRK ta

- A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV2 (ρ peak) where π/μ ~10.
- ππγ % background to μμγ signal (MTRK<115 MeV) is ~15% at ρ peak ππγ MTRK tail in the μμγ region must be well under control.
 ππγ MTRK tail tuned using
 - $\phi \rightarrow \pi + \pi \pi 0$ control sample.
- Excellent agreement on MTRK (ππγ and μμγ) distributions

Background:

Main backgrounds estimated from MC shapes fitted to data distribution in MTrk $(\pi\pi\gamma/\mu\mu\gamma, \pi\pi\pi, ee\gamma)$

- Systematic error on $\mu\mu\gamma$ due to background $\pm /6$ in the p peak

Cross check of \pi/\mu separation

- The π/μ separation has been crosschecked with two different (and independent) methods:
- \Box A kinematic fit, in the hypothesis of 2 body+1 γ (ISR) events.
- A cut on the quality of the fitted tracks, parametrized by σMTRK

A. Palladino – International workshop on e+e- collisions from phi to psi - 9 September 2013

Results of σ MTRK and KF cross checks

π/μ separation obtained with these methods well in agreement with the standard one

• The ratio of the muon yields from kinematic fit method with $\chi 2\mu\mu < 10$ to the muon yields from standard method, fitted with the constant. Yellow bar is the systematic error of the kinematic fit

A. Palladino – International workshop on e+e- collisions from phi to psi - 9 September 2013

Black dots are the differences of $\mu\mu\gamma$ yields obtained with std and σ MTRK methods; Red line is the total systematic error of the difference.

• 32

Efficiencies for μμγ

KLOE

- The efficiencies of μμγ (and ππγ) for trigger, tracking, and PID have been carefully studied with data, using the single particle method and taking into account the kinematics by MC.
- Differently from $\pi\pi\gamma$, where the 3π sample was used to get the data/MC corrections, for $\mu\mu\gamma$ there is no a direct control sample and we had used mmg itslef with lose selection criteria.
- □All the efficiencies has been found to be above 96% with ~1% data/MC correction as maximum.

Extracting $\sigma\pi\pi$ and $|F-||^2$ from

a) Via absolute Normalisation to Bhabha events (KLOE05,08,10):

1)
$$\frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^{2}} = \frac{\Delta N_{Obs} - \Delta N_{Bkg}}{\Delta M_{\pi\pi}^{2}} \cdot \frac{1}{\varepsilon_{Sel}} \cdot \frac{1}{\int Ldt}$$

2)
$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma^{obs}}{dM_{\pi\pi}^2} \times \frac{1}{H(s)}$$

 $|\mathbf{F}_{\pi}|^{2} = \frac{3s}{\pi\alpha^{2}\beta_{\pi}^{3}}\sigma_{\pi\pi}(s)$

3)

 $d\sigma^{-} \gamma(\gamma)/dM2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. Iuminosity*:

Obtain σ \Box from (ISR) radiative cross section ds \Box $\gamma(\gamma)/dM2$ via theoretical radiator function H(s):

Relation between
$$|F\pi|^2$$
 and the cross section $\sigma(e+e- \ \Box \ + \Box \ -)$

b) Via bin-by-bin Normalization to rad. Muon events (New measurement!)

Radiative Corrections

Radiator-Function H(s,sp) (ISR):

ISR-Process calculated at NLO-level
 PHOKHARA generator
 (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \times \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times H(s,s\pi)$$

Radiative Corrections:

i) Bare Cross Section

divide by Vacuum Polarization $d(s)=(a(s)/a(0))^2$

 \pm from F. Jegerlehner

ii) FSR

Cross section **spp** must be incl. for FSR for use in the dispersion integral of a**m**

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, MTrk) and in the mapping $s\pi \rightarrow s\gamma*$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

LA Event Selection (KLOE10)

2 pion tracks at large angles $500 < \theta p < 1300$

Photons at large angles $500 < \theta\gamma < 1300$

- independent complementary analysis
- \checkmark threshold region (2m π)2 accessible
- γISR photon detected
 (4-momentum constraints)
- ✓ lower signal statistics
- Iarger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi + \pi \pi 0$ background contamination
- ✓ irreducible background from φ decays (φ → f0 γ → ππ γ)

At least 1 photon with 50o< θg <130o and Eg > [➡] 0 MeV [➡] photon detected

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

LA Event Selection (KLOE10)

Use data sample taken at √s≅1000 MeV, 20 MeV below the f-peak

Event selection

- Experimental challenge: Fight background from
 - $e+e- \rightarrow \mu+\mu-\gamma$,
 - $e+e- \rightarrow \ e+e- \gamma$
 - $\phi \rightarrow \pi + \pi \pi 0$

separated by means of kinematical cuts in *trackmass MTrk* and the angle Ω between the photon and the missing momentum $p_{miss} = -(p_+ + p_-)$

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.

 π –

Event Selection

- Experimental challenge: control backgrounds from
 - $\phi \rightarrow \pi + \pi \pi 0$
 - $e+e- \rightarrow e+e- \gamma$
 - $e+e- \rightarrow \mu+\mu-\gamma$, removed using kinematical cuts in *trackmass MTrk* - M $\pi\pi$ 2 plane
- MTrk: defined by 4-momentum conservation assuming 2 charged particle (of same mass) and one γ in the final state

$$\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0$$

To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight. $\pi + \pi - \gamma$,

 L_{\pm}

μ Tracking efficiency

Since for muons we don't have an control sample (like 3π for pions), we have refiltered MMISS all 2002 data set (240 pb-1) according to: (MeV) $\frac{300}{250}$

- 1) a "good" tagging track extrapolating back to the IP, which satisfies the trigger associated to a cluster with LogrL>0, 1 and MLP>0.7
- 2) 1 neutral prompt clusters not associated to the tagging track with E>50 MeV. A constraint on the photon energy and time to further clean the sample, and improve missing momentum and energy
- 3) The tagging track must have p > 450 MeV (to reject $\pi + \pi \pi 0$ events), the *candidate* track must have mass (built from 4 momentum conservation) 50 < Mmiss < 130 MeV

Example of data/MC comparison for $\mu\mu\gamma$ and $\pi\pi\gamma$: momentum components of μ and π

K

ISR: KLOE vs BaBar 2π

KLOE:

- The photon is "soft" (detected or not)
- No Kinematic fit
- Bin of 0.01 GeV2 (~8 MeV at ρ peak) >> $\delta M \pi \pi 2 \sim 2$ 10-3 GeV2

⇒ Unfolding only relevant at low Mππ2 (up to 4%) and at ρ-ω cusp,

- Negligible contribution of LO FSR, and <2% contribution of NLO FSR(1 γ ISR+1 γ FSR) only at low M $\pi\pi$ 2
- Normalize to Luminosity (=Bhabha), but also to μμγ (K12)
- Use **Phokhara** for acceptance, radiator and additional-photon effects

BaBar:

- The photon is "hard" and detected
- Kinematic fit to improve resolution
- Bin of 2 MeV in the region 0.5-1 GeV
- \Rightarrow Larger effects on the unfolding
- Negligible contribution of LO FSR,
 % contribution of NLO FSR(1γISR+1γFSR)
- Normalize to $\mu\mu\gamma$
- Interplay btw **Phokhara** and **AfkQED** to estimate additional-photon effects

Different selections and use of theoretical ingredients (R.C., Luminosity, Radiator). Additional cross checks are possible (and needed)