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Current status

Experimental value: a,ZXP = 116592089(63) x 10— 11

error dominated by BNL E821, to be improved by factor 4 by Fermilab ES89

Standard Model value: a,EM = 116591802(49) x 10~ ' (e.g. Hoecker, '11)

Hadronic Vacuum Polarization contribution: 6923(42) x 10~ §

error dominated by o(e"e™ — hadrons)

Hadronic Light by Light contribution: 105(26) x 10~
(model calculation!)

Discrepancy:

a® — o = 287(63)(49) x 107" =287(80) x 107" — 360



Reasons for using Lattice QCD

e Lattice QCD can provide a first-principle theoretical computation of
hadronic contributions to a,, , instead of experimental input plus models
Need HVP to about 1%, HLxL to about 20%, hence focus on HVP

* Need check on current systematic errors

Example: a/I;IVP

Obtain I = 1 contribution in two different ways, from e™

e~ or from 7 decays

ay, "' (ete) =6923(42) x 107" wvs. a7 (7) =7015(46) x 10~ : 18 ¢

(Hoecker ’11; for (model-based) explanation, see Jegerlehner & Szafron '12)

Should we throw out aEVP(T) ? Believe J&S model?

HVP

Note: using a,

(7) reduces discrepancy to 2.4 o instead of 3.6 o !



Methods using Lattice QCD

e Put quarks, gluons and photons on the lattice, probe with a muon,
and compute the full hadronic contribution! Still in the future;
“baby” version of this idea is used to go after HLxL (Blum et al. ’08/°12)

* Treat QED (photons and muons) in perturbation theory, putting only
qguarks and gluons on the lattice

N

Example: aEVP = 40 /OO dQ? f(QQ,mi) (T1(0) — II(Q?))
; /,

~

pN
(Lautrup & de Rafael ‘69, Blum ’'02)

Compute II(Q?) using Lattice QCD .




Hadronic Vacuum Polarization on the lattice ;@%

Need to evaluate: aZIVP = 4a? /OO dQ? f(QQ,mi) (I1(0) — I1(Q?))
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What is needed

0.015

0.010 |-

* more data at small Q*
= twisted boundary conditions

0.005 |-

» theoretically reliable fit function

of )? behavior

* (as almost always) smaller statistical errors

2
Smallest non-zero momentum on lattice: () = (O, 0,0, —Z) (periodic bcs)
a

Standard fit function has been based on vector-meson dominance and tweaks:
assume essentially that 11(Q°) = A + B/(Q* 4+ m_) + polynomial,,
but cut starts at O = —4m? , need to do much better!

w7



Fitting the Q2 behavior of I1(Q?)
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difference of about 15%!

(Fig. from Aubin, Blum, MG & Peris, '12,

using MILC ensemble with _
a=0.09fm. m.~ 450 MeV) numbers that claim to be more

precise!

At present, don’t trust any



Padé approximants: model independent! (Aubin, Blum, MG & Peris ’12)

Using theorems by Baker ‘69 and Barnsley '73, can prove that the functions

[P/2]

MQ2) =T(0) - Q* |ag + § —
’ nz_:laner

with P =2, 3, ... provide a converging sequence of PAs to the vacuum
polarization, based on general analyticity properties of H(QQ), and with

an >0,

b, > 4m?

mw )

ap =0 for P even

everywhere except near the cut Q? € (—oo, —4m?2] (Minkowski axis).

Note: setting b1 = m% (vector meson dominance) is not a valid PA!



Tests of I1(Q?) fits

(MG, Maltman & Peris’13)

Create a model I1(Q?) from non-strange vector tau spectral data extended
beyond the tau mass using perturbation theory and a model for resonances:
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(Fig. from Boito et al. ’12; OPAL data)

« “Exact” (model) value:

107HVPQTSL GeVE — 1 904

* Create fake data set at typical
lattice momenta with typical
lattice covariance matrix

* Try fits and see how they work!



Using Q” values onan a = 0.06 fm |

L? x T = 64 x 144 periodic lattice:

Fit a, x 107 | errorx107 | difference (o) | x?/dof

VMD 1.3201 0.0052 22 2189/47

VMD+ 1.0658 0.0076 18 67.4/46

PA [0,1] | 0.8703 0.0095 35 285/46

PA[1,1]| 1.116 | 0.022 4 61.4/45

PA [1,2]| 1.182 | 0.043 0.5 55.0,/44

PA[2,2]| 1177 | 0.058 0.5 54.6/43
exact: 1071 IVP@TSL GeVE — 1 904

difference: o lexact — fitted value|

VMD fits may look good but fool you; PA reliable, but more data required

fit error
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Other improvements:

*  Smaller errors (AMA = “all-mode averaging” (Blum, Izubuchi & Shintani’12))

* Extrapolation to physical pion masses non-trivial
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Concluding remarks

There are issues with getting aEVP from e"e~ — hadrons and tau

spectral data; a first-principle computation in QCD should be pursued:
need Lattice QCD

Computing aEVP with Lattice QCD is far from easy, but

- we understand what is needed

- it looks feasible in a time scale of 3-5 years

Hadronic light-by-light is (even) harder, but not as much precision required —
still, a tall order!

Lattice is the only way to make progress (see Blum @ Lattice 2012)



BACK-UP SLIDES



Twisted boundary conditions

In a finite volume one needs to choose boundary conditions, even if they do not
change the essential physics, which is the case if m L > 1

* Periodic boundary conditions:

fle+ L) = f(x)

eP(@ L) — gipx — p=2mn/L , n € 4

* Twisted boundary conditions:
flx+L)=e"f(x)
ePlatl) — pipr+if — p=2mn+0)/L, n € 7

Taking 0 < ¢ < 27 allows momentum to vary continuously!
(Bedaque ’04, de Divitiis et al. ’04, Sachrajda & Villadoro ’05)
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Lattice errors -- general

e Lattice QCD evaluates infinite sums over Feynman diagrams through
the path integral using Monte-Carlo techniques: statistical error
reduce using smarter algorithms and larger computers

* Discretize space-time on a lattice with lattice spacing a in a finite volume
L3 x T': systematic errors (e =006 fm,L=4fm,T =8 fm)
reduce by extrapolating a — 0 and L, 1" — o0

* Most computations: pions too heavy (200 — 300 MeV ), in order to fit
into finite box, need to extrapolate light quark masses m,, 4 to physical values

(Need good theoretical understanding of dependence on a, L, 1I', m,, 4!)



