doubly heavy exotics

Marek Karliner JHEP 7,153(2013) – arXiv:1304.0345, with S. Nussinov JHEP 8,96(2013) – arXiv:1305.6457, with Y. Frishman

Tel Aviv University

From ϕ to ψ , Rome, Sep. 2013

Possibility of Exotic States in the Upsilon system

Marek Karliner^a* and Harry J. Lipkin^{a,b†}

Abstract

Recent data from Belle show unusually large partial widths $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi^+\pi^-$ and $\Upsilon(5S) \rightarrow \Upsilon(2S) \pi^+\pi^-$. The Z(4430) narrow resonance also reported by Belle in $\psi'\pi^+$ spectrum has the properties expected of a $\bar{c}cu\bar{d}$ charged isovector tetraquark $T^{\pm}_{\bar{c}c}$. The analogous state $T^{\pm}_{\bar{b}b}$ in the bottom sector might mediate anomalously large cascade decays in the Upsilon system, $\Upsilon(mS) \rightarrow T^{\pm}_{\bar{b}b}\pi^{\mp} \rightarrow \Upsilon(nS) \pi^+\pi^-$, with a tetraquark-pion intermediate state. We suggest looking for the $\bar{b}bu\bar{d}$ tetraquark in these decays as peaks in the invariant mass of $\Upsilon(1S)\pi$ or $\Upsilon(2S)\pi$ systems. The $\bar{b}bu\bar{s}$ tetraquark can appear in the observed decays $\Upsilon(5S) \rightarrow \Upsilon(1S) K^+K^-$ as a peak in the invariant mass of $\Upsilon(1S)K$ system. We review the model showing that these tetraquarks are below the two heavy meson threshold, but respectively above the $\Upsilon \pi\pi$ and $\Upsilon K\bar{K}$ thresholds.

Observation of two charged bottomonium-like resonances

The Belle Collaboration

(Dated: May 24, 2011)

Abstract

We report the observation of two narrow structures at $10610 \text{ MeV}/c^2$ and $10650 \text{ MeV}/c^2$ in the $\pi^{\pm} \Upsilon(nS)$ (n = 1, 2, 3) and $\pi^{\pm} h_b(mP)$ (m = 1, 2) mass spectra that are produced in association with a single charged pion in $\Upsilon(5S)$ decays. The measured masses and widths of the two structures averaged over the five final states are $M_1 = 10608.4 \pm 2.0 \text{ MeV}/c^2$, $\Gamma_1 = 15.6 \pm 2.5 \text{ MeV}$ and $M_2 = 10653.2 \pm 1.5 \text{ MeV}/c^2$, $\Gamma_2 = 14.4 \pm 3.2 \text{ MeV}$. Analysis favors quantum numbers of $I^G(J^P)=1^+(1^+)$ for both states. The results are obtained with a 121.4 fb^{-1} data sample collected with the Belle detector near the $\Upsilon(5S)$ resonance at the KEKB asymmetric-energy e^+e^- collider.

Comparison of $Z_b(10610)$ and $Z_b(10650)$ parameters obtained from different decay channels. The vertical dotted lines indicate $B^*\overline{B}$ and $B^*\overline{B}^*$ thresholds.

 $J^P = 1^+$ for both $Z_b(10610)$ and $Z_b(10650)$

The Z_b resonances decay into $\Upsilon(nS)$ and a charged pion \implies must contain both $\bar{b}b$ and $\bar{d}u$

→ manifestly exotic

M. Karliner, doubly heavy exoitics

PHIPSI13, Rome

Neutral member of the I=1 multiplet very recently also observed by Belle in Dalitz plot analysis

• $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^0\pi^0$ decay

arXiv:1207.4345

After the discovery of Z_{b} -s by Belle, natural to expect analogous states in the charm system

one caveat:

a priori unknown whether charmed quarks are heavy enough to allow for binding

encouraging indications from toy model of QCD in D=1+1 [JHEP 8,96(2013) - arXiv:1305.6457]

in March 2013 BES in Beijing, followed by Belle in KEK provided the answer:

M. Karliner, doubly heavy exoitics

PHIPSI13, Rome

G

Observation of a Charged Charmoniumlike Structure in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $\sqrt{s} = 4.26$ GeV

We study the process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at a center-of-mass energy of 4.260 GeV using a 525 pb⁻¹ data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be $(62.9 \pm 1.9 \pm 3.7)$ pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/ c^2 in the $\pi^{\pm}J/\psi$ mass spectrum, which we refer to as the $Z_c(3900)$. If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the $\pi^{\pm}J/\psi$ invariant mass spectrum, neglecting interference, results in a mass of $(3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$ and a width of $(46 \pm 10 \pm 20) \text{ MeV}$. Its production ratio is measured to be $R = (\sigma(e^+e^- \rightarrow \pi^\pm Z_c(3900)^\mp \rightarrow \pi^+\pi^- J/\psi)/\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)) = (21.5 \pm 3.3 \pm 7.5)\%$. In all measurements the first errors are statistical and the second are systematic.

S

Study of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and Observation of a Charged Charmoniumlike State at Belle

The cross section for $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ between 3.8 and 5.5 GeV is measured with a 967 fb⁻¹ data sample collected by the Belle detector at or near the Y(*nS*) (*n* = 1, 2, ..., 5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+\pi^- J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) $\rightarrow \pi^+\pi^- J/\psi$ decays, a structure is observed in the $M(\pi^\pm J/\psi)$ mass spectrum with 5.2 σ significance, with mass $M = (3894.5 \pm 6.6 \pm 4.5) \text{ MeV}/c^2$ and width $\Gamma = (63 \pm 24 \pm 26) \text{ MeV}/c^2$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

 $M_{Z_c} = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$ $\Gamma_{Z_c} = 46 \pm 10 \pm 20 \text{ MeV}$

 $Z_c^+(3900)$ decays to $J/\psi \pi^+$

should also be seen in $\overline{D}D^*$

tetraquark or a "molecule" ?

The molecule idea has a long history: Voloshin & Okun 1976, de Rujula, Georgi & Glashow 1977 Tornqvist, Z. Phys. C61,525 (1993)

 Z_b -s sit 3 MeV above the $\overline{B}B^*$ and \overline{B}^*B^* thresholds X(3872) sits at $\overline{D}D^*$ threshold

strong hints in favor of the molecular interpretation

what about $Z_c(3900)$?

Heavy-light $Q\bar{q}~$ mesons have I=1/2

 \rightarrow they couple to pions

→ deuteron-like meson-meson bound states, "deusons"

via pion exchange – no $\overline{D}D$, only $\overline{D}D^*$

 $D\bar{D}^*$ (I=0) at threshold $\leftrightarrow \times X(3872)$! S-wave $\rightarrow J^P = 1^+$

I=1 attraction x3 weaker than I=0

 \rightarrow I=1 expected well above threshold

What about $\overline{B}B^*$ analogue $2\dots$

B B* vs D D*:

- -- same attractive potential
- -- much heavier, so smaller kinetic energy
- \rightarrow expect $B\bar{B}^*$ and $B^*\bar{B}^*$ I=1 states near threshold

 $\rightarrow Z_b(10610)$ and $Z_b(10650)$ seen by Belle !!!

I=0 binding much stronger \rightarrow I=0 states expected well <u>below</u> threshold

EXP signature:

$$X_b(I=0) \longrightarrow \Upsilon(nS)\omega, \quad \chi_b \pi^+ \pi^-$$

perhaps also
 $X'_b(I=0) \longrightarrow \Upsilon(nS)\bar{B}^*B\gamma \text{ via EM } B^* \to B\gamma$

\rightarrow LHCb!

in the $M_Q \longrightarrow \infty$ limit attractive potential between the two heavy mesons becomes universal, as kinetic energy vanishes:

Kinetic
$$E \sim \frac{p^2}{M_Q} \longrightarrow 0$$
 as $M_Q \to \infty$

 \rightarrow treat kinetic E as perturbation:

 $H = a \cdot p^2 + V(r)$ where $a \equiv 1/2\mu_{\rm red}$

M. Karliner, doubly heavy exoitics

PHIPSI13, Rome

convert the parameter $a \sim 1/M_Q$ into a dimensionless parameter \tilde{a}

"natural" unit of ~ 0.8 Fermi ~ 4.0 GeV⁻¹

With $m_D \sim 2 \text{ GeV}$ and $m_B \sim 5.3 \text{ GeV}$ $\tilde{a}(D) = 1/8$ $\tilde{a}(B) = 1/21$

 \rightarrow small: can use 1-st order P.T.

for I=1 potential have 2 data points:

 $Z_c(3900)$ at $\tilde{a}(D)$ approximately 27 MeV above $\overline{D}D^*$ threshold $Z_b(10610)$ at $\tilde{a}(B)$ approximately 3 MeV above $\overline{B}B^*$ threshold Linear extrapolation to $\tilde{a} = 0$ yields $E_b^{I=1}(\tilde{a}=0) \approx -11.7 \,\mathrm{MeV}$

In view of the convexity, the actual binding energy likely to slightly exceed this linear extrapolation

→ use this result for the isovector channel to estimate the $\bar{B}B^*$ binding in the isoscalar channel

Assuming that the isoscalar binding energy in the $m_Q \to \infty$ limit is 3 times larger than for the isovector,

$$E_b^{I=0}(\tilde{a}=0) \approx 3 \cdot (-11.7) = -35 \,\mathrm{MeV}$$

X(3872) at $\overline{D}D^*$ threshold $\rightarrow E_b^{I=0}(\tilde{a}(D)) \approx 0$

Linear extrapolation to $\tilde{a}(B)$ yields $\bar{B}B^*$ binding

energy in the isoscalar channel $\approx -20 \,\mathrm{MeV}$

Heavy Quark Nuclear Physics!

M. Karliner, doubly heavy exoitics

PHIPSI13, Rome

- the newly discovered $Z_c(3900)$ isovector resonance confirms and refines the estimates for the mass of the putative $\overline{B}B^*$ isoscalar bound state.
- immediately leads to several predictions:
 - two I=0 narrow resonances in bottomonium system, ~23 MeV below $Z_b(10610)$ and $Z_b(10650)$, i.e. ~20 MeV below $\bar{B}B^*$ and \bar{B}^*B^* thresholds
 - I=0 resonance near \bar{D}^*D^* threshold - I=1 resonance slightly above \bar{D}^*D^* threshold

- the newly discovered $Z_c(3900)$ isovector resonance confirms and refines the estimates for the mass of the putative $\overline{B}B^*$ isoscalar bound state.
- immediately leads to several predictions:
 - two I=0 narrow resonances in bottomonium system, ~23 MeV below $Z_b(10610)$ and $Z_b(10650)$, i.e. ~20 MeV below $\bar{B}B^*$ and \bar{B}^*B^* thresholds
 - I=0 resonance near \bar{D}^*D^* threshold
 - I=1 resonance slightly above $D^* D^*$ threshold reported by BES: Aug 13, arXiv:1308.2760 $Z_c^+(4025): M=4026.3 \pm 2.6 + 3.7, \Gamma = 24.8 \pm 5.6 \pm 7.7 \text{ MeV}$ & Sep 10 arXiv:1309.1896 $Z_c^+(4020): M=4022.9 \pm 0.8 + 2.7, \Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$ (mass a bit low)

Likely observable at LHC and Tevatron:

Guo, Meißner & Wang, arXiv:1308.0193

~ nb x-section for Z_b(10610) and Z_b(10650)

x-section for Z_c(3900) and Z_c(4020) larger by a factor of 20-30

large enough to be observed

x-section for neutral exotic states ?

Null result from CMS:

CMS-BPH-11-016

Search for a new bottomonium state decaying to $Y(1S)\pi^{+}\pi^{-}$ in pp collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration* Abstract

The results of a search for the bottomonium counterpart, denoted as X_b , of the exotic charmonium state X(3872) is presented. The analysis is based on a sample of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 20.7 fb^{-1} . The search looks for the exclusive decay channel $X_b \rightarrow Y(1S)\pi^+\pi^-$ followed by $Y(1S) \rightarrow \mu^+\mu^-$. No evidence for an X_b signal is observed. Upper limits are set at the 95% confidence level on the ratio of the inclusive production cross sections times the branching fractions to $Y(1S)\pi^+\pi^-$ of the X_b and the Y(2S). The upper limits on the ratio are in the range 0.9–5.4% for X_b masses between 10 and 11 GeV. These are the first upper limits on the production of a possible X_b at a hadron collider.

The null result from CMS in search for

$$X_b \rightarrow Y(1S)\pi^+\pi^-$$

is excellent news for the molecular picture, since isoscalar X_b with $J^{PC} = 1^{++}$ cannot decay into $\Upsilon(1S)^+ \pi^-$ It can decay into $\Upsilon(1S)\omega$ or $\chi_b \pi^+ \pi^-$

 $\Sigma_h^+ \Sigma_h^-$ dibaryon ?

 Σ_b heavier, with $I = 1 \rightarrow$ stronger binding via π

→ deuteron-like J=1, I=0 bound state: "beautron" electric charges contribute extra ~3 MeV to binding energy

exp. signature: $(\Sigma_b^+ \Sigma_b^-) \rightarrow \Lambda_b \Lambda_b \pi^+ \pi^ \Gamma(\Sigma_b^-) = 4.9 \pm 3 \text{ MeV}, \quad \Gamma(\Sigma_b^+) = 9.7 \pm 3 \text{ MeV}$ so might be visible

should be seen in lattice QCD $(\Sigma_c^0 \Sigma_c^+) \to \Lambda_c \Lambda_c \pi^- \pi^0$ as well? doubly heavy baryons QQq (bbq,ccq, bcq)

- not exotic, must exist
- excellent challenge for EXP (LHCb!) $(bbq) \rightarrow (\bar{c}cs) (\bar{c}cs)q \rightarrow J/\psi J\psi \Xi$ unique signature, w/o background
- QQq and $QQ\bar{q}\bar{q}\bar{q}$ have the same color structure
- → once QQq mass is known, can immediately predict $QQ\bar{q}\bar{q}\bar{q}$ mass :

 $m(cc\bar{u}\bar{d}) = m(\Xi_{ccu}) + m(\Lambda_c) - m(D^0) - \frac{1}{4}[m(D^*) - m(D)]$

Summary

- a simple and consistent picture emerges from Belle and BES data:
- the new exotic resonances are loosely bound states of $\bar{D}D^*$, \bar{D}^*D^* , $\bar{B}B^*$, and \bar{B}^*B^* seen!
- prediction: $\overline{D}^* D^*$ resonances in I=0 and I=1 channels
- predictions: new $\bar{B}B^*$ and \bar{B}^*B^* states below threshold heavy "deuteron": $\Sigma_b^+ \Sigma_b^-$ (and $\Sigma_c^0 \Sigma_c^+$?)
- challenge for EXP: doubly heavy baryons QQq (LHCb?)
- QQq \rightarrow accurate prediction for $QQ\bar{q}\bar{q}$ tetraquark
- challenge for TH: derive from QCD