Impact of γV-vertex corrections on the $\omega \pi^{0} \gamma$ and $\phi \pi^{0} \gamma$ transition form factors

Sergii Raspopov
V.N. Karazin Kharkiv National University, Ukraine

The aim of the present work is to present an effective field theory description of the conversion transition of the vector meson \boldsymbol{V} into the pseudoscalar \boldsymbol{P} and the lepton pair $\boldsymbol{l}^{+} \boldsymbol{l}^{-}$. The lepton pair is produced by the virtual photon $\gamma^{*}: V \rightarrow \boldsymbol{P} \gamma^{*} \rightarrow \boldsymbol{P} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$. The most recent information on the former process comes from the CERN SPS experiment NA 60 [1]. The knowledge given by Novosibirsk experiment CMD-2 [2] is less precise. The measured quantity is the transition form factor $\mathcal{F}_{V \rightarrow P \gamma^{*}}\left(Q^{2}\right)$ as a function of the lepton-pair invariant mass $Q^{2} \equiv M_{l^{+} l^{-}} \equiv M_{\gamma^{*}}$. The most recent theoretical advances in the modeling of the $\boldsymbol{V} \boldsymbol{P} \boldsymbol{\gamma}^{*}$ transition form factors [3-5] were partly motivated by a drastic discrepancy between a novel CERN SPS NA 60 experiment data and a naive VMD ansatz prediction for the $\omega \rightarrow \pi^{0} \gamma^{*}$ transition form factor. We would like to remark that new precise data from KLOE experiment will appear soon [6] and serve as an important test of the models.

Effective Lagrangian

For the odd-intrinsic-parity interactions of vector mesons we use chiral Lagrangian in vector formulation for spin-1 fields [7, 8]. The Lagrangian terms relevant for the calculation of $\mathcal{F}_{V \rightarrow P \gamma^{*}}\left(Q^{2}\right)$:

- $\mathcal{L}_{\gamma V}=-e f_{V} \partial^{\mu} B^{\nu}\left(\tilde{\rho}_{\mu \nu}^{0}+\frac{1}{3} \tilde{\omega}_{\mu \nu}-\frac{\sqrt{2}}{3} \tilde{\phi}_{\mu \nu}\right)$, where $\tilde{V}_{\mu \nu} \equiv \partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}$;
- $\mathcal{L}_{V \gamma \pi^{0}}=-\frac{4 \sqrt{2} e h_{V}}{3 f_{\pi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} B_{\nu}$

$$
\times\left(\rho_{\alpha}^{0}+3 \omega_{\alpha}+3 \epsilon_{\omega \phi} \phi_{\alpha}\right) \partial_{\beta} \pi^{0}
$$

- $\mathcal{L}_{\omega \rho^{0} \pi^{0}}=-\frac{4 \sigma_{V}}{f_{\pi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} \omega_{\nu} \pi^{0} \partial_{\alpha} \rho_{\beta}^{0}$,
where $\epsilon^{\mu \nu \alpha \beta}$ is the totally antisymmetric
Levi-Civita tensor,
$f_{\pi}=92.4 \mathrm{MeV}$ is the pion decay constant.
- Short-distance constraint [9]:

$$
\sqrt{2} h_{V}-\sigma_{V} f_{V}=0
$$

Radiative decays $V \rightarrow \pi^{0} \gamma$

- These decays provide an access to the value of the model parameter \boldsymbol{h}_{V} via the partial width:

$$
\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)=\frac{4 \alpha M_{\omega}^{3} h_{V}{ }^{2}}{3 f_{\pi}^{2}}\left(1-\frac{m_{\pi}^{2}}{M_{\omega}^{2}}\right)^{3}
$$

- The PDG value for widths [10]
$\Gamma\left(\rho^{0} \rightarrow \pi^{0} \gamma\right)=(89.46 \pm 11.94) \mathrm{keV}$ $\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)=(702.97 \pm 24.67) \mathrm{keV}$ roughly follow the $S U(3)$ prediction of its ratio. The extracted coupling constant is

$$
h_{V}=0.041 \pm 0.003
$$

OZI-forbidden process

- The $\phi \rightarrow \pi^{0} \gamma$ decay width vanishes as long as the ϕ-meson is a pure $s \bar{s}$ state. The measured width $\Gamma\left(\phi \rightarrow \pi^{0} \gamma\right)=(5.41 \pm 0.26) \mathrm{keV}$ is, however, significantly different from zero.
- Thus $\omega \phi$-mixing ansatz may be assumed and compared with the data. Estimated mixing parameter: $\varepsilon_{\omega \phi}=(5.79 \pm 0.17) \times 10^{-2}$.

Conversion decays

$$
V \rightarrow \pi^{0} \gamma^{*} \rightarrow \pi^{0} l^{+} l^{-}
$$

- The transition form factors can be extracted from the lepton-pair invariant mass spectrum $\frac{d \Gamma\left(V \rightarrow P \gamma^{*}\right)}{d Q^{2}}$, where $\sqrt{Q^{2}} \equiv M_{\gamma^{*}} \equiv M_{l^{+l^{-}}}$.
- Experimentally only the normalized FF's are known:

$$
F_{V \rightarrow P \gamma^{*}}\left(Q^{2}\right)=\frac{\mathcal{F}_{V \rightarrow P \gamma^{*}}\left(Q^{2}\right)}{\mathcal{F}_{V \rightarrow P \gamma^{*}}(0)}
$$

- We include the direct $\omega \pi^{0} \gamma$-coupling and subsequent $\rho \gamma$ conversion contributing to the Dalitz decay $\omega \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$. According to the Lagrangian terms, the form factor:

$$
F_{\omega \pi^{0} \gamma^{*}}\left(Q^{2}\right)=1-\frac{\sigma_{V} f_{\rho}\left(Q^{2}\right)}{\sqrt{2} h_{V}} Q^{2} D_{\rho}\left(Q^{2}\right) .
$$

- An additional energy dependence of the EM coupling $f_{\rho}\left(Q^{2}\right)$ arises due to higher-order corrections. The ρ-meson propagator is

$$
D_{\rho}\left(Q^{2}\right)=\left[Q^{2}-M_{\rho}^{2}-\Pi_{\rho}\left(Q^{2}\right)\right]^{-1}
$$

where $\Pi_{\rho}\left(Q^{2}\right)$ is the self-energy operator.
[1] R. Arnaldi et al. [NA60 Collaboration], Phys. Lett. B 677 (2009) 260. [2] R.R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B 613 (2005) 29 [3] S. P. Schneider, B. Kubis and F. Niecknig, Phys. Rev. D 86 (2012) 054013. [4] S. Ivashyn, Prob. Atomic Sci. Technol. 2012N1 (2012) 179. [5] C. Terschlüsen and S. Leupold, Phys. Lett. B 691 (2010) 191. [6] D. Babusci et al. [KLOE-2 Collaboration], arXiv:1306.5740 [hep-ex]. [7] G. Ecker, A. Pich and E. de Rafael, Phys. Lett. B 237 (1990) 481. [8] J. Prades, Z. Phys. C 63 (1994) 491.
[9] S. Eidelman, S. Ivashyn, A. Korchin, G. Pancheri, O. Shekhovtsova, [9] S. Eidelman, S. Ivashyn, A.
Eur. Phys. J. C 69 (2010) 103.
Eur. Phys. J. C 69 J. Beringer et al. [PDG Collaboration], Phys. Rev. D 86 (2012) 010001. [11] S. A. Ivashyn and A. Y. .Korchin, Eur. Phys. J. C 49 (2007) 697.

EM vertex modification

- In the region of interest the most important contribution to $\Pi_{\rho}\left(Q^{2}\right)$ consist of the pion loop vertex correction to $\gamma \rho$ coupling [11]:

- In the following we include only the imaginary part of the loop contribution. This will be the dominant term for the energy-dependent width

$$
\Gamma_{t o t, \rho}\left(Q^{2}\right)=-M_{\rho}^{-1} \operatorname{Im} \Pi_{\rho}\left(Q^{2}\right) .
$$

-The equation for the modified EM coupling:

$$
f_{\rho}\left(Q^{2}\right)=f_{V}-\frac{\imath}{e Q^{2}} \sum_{c} \operatorname{Im} \Pi_{\gamma(\pi \pi) \rho}\left(Q^{2}\right)
$$

The coupling constant f_{V} could be found from $\Gamma\left(\rho^{0} \rightarrow e^{+} e^{-}\right)=\frac{e^{4} M_{\rho}}{12 \pi}\left[f_{\rho}\left(Q^{2}=M_{\rho}^{2}\right)\right]^{2}$.
According to the PDG value for the width:
$f_{V}=0.20173 \pm 0.00086$.
Results

Summary

