e⁺e⁻ hadron production cross sections at Belle

Jason D. Crnkovic - University of Washington, Seattle PHIPSI13, September 2013

1. Motivation

YISR

2. Outline of a cross section measurement.

 $H^0, H^1, H^2, ...$

3. Example cross section measurements.

The international Belle experiment operated at a B-Factory, and uses a general purpose detector.

Positron Target

Electron

Belle Detector

Why measure exclusive e⁺e⁻ hadronic final state cross sections?

A. Calculation of LO Hadronic Vacuum Polarization

- a. Muon anomalous magnetic moment.
- b. Running of alpha.
- Compare isovector e⁺e⁻ cross sections to corresponding τ–spectral functions

Why measure exclusive e⁺e⁻ hadronic final state cross sections?

A. Calculation of LO Hadronic Vacuum Polarization

- a. Muon anomalous magnetic moment.
- b. Running of alpha.
- c. Compare isovector e⁺e⁻ cross sections to corresponding τ−spectral functions

B. Hadron spectroscopy

- a. New resonances (X, Y, Z, ...)
- b. Measure intermediate states
- c. Measure resonance parameters
- d. Check QCD models

[1] T. Teubner, K. Hagiwara, R. Liao, A. D. Martin and D. Nomura, Nucl. Phys. Proc. Suppl. **225-227**, 282 (2012).
[2] C. P. Shen *et al.* [Belle Collaboration], Phys. Rev. D **80**, 031101 (2009) [arXiv:0808.0006 [hep-ex]].

Multi-hadron cross sections determine Hadronic Vacuum Polarization contributions for muon (g-2) and running of α_{OED}

Measurements with increased precision is not enough; Cross checks between experiments is needed as well.

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

Low energy Hadronic Vacuum Polarization contribution is from the measured cross sections

$$a_{\mu}^{LOHVP} = \frac{1}{4\pi^{3} (\hbar c)^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds \sigma^{bare} \left(e^{+}e^{-} \rightarrow hadrons \right) K(s)$$

Low energy Hadronic Vacuum Polarization contribution is from the measured cross sections

$$a_{\mu}^{LOHVP} = \frac{1}{4\pi^{3} (\hbar c)^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds \sigma^{bare} \left(e^{+}e^{-} \rightarrow hadrons \right) K(s)$$

1: Measure Exclusive Cross Sections.

Bare σ's include FSR and exclude VP & ISR:

$$\sigma^{bare}(e^+e^- \to hadrons) = \sigma^{bare}(e^+e^- \to \pi^+\pi^-) + \sigma^{bare}(e^+e^- \to \pi^+\pi^-\pi^0) + \sigma^{bare}(e^+e^- \to K^+K^-) + \cdots$$

Low energy Hadronic Vacuum Polarization contribution is from the measured cross sections

$$a_{\mu}^{LOHVP} = \frac{1}{4\pi^{3} (\hbar c)^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds \sigma^{bare} \left(e^{+}e^{-} \rightarrow hadrons \right) K(s)$$

1: Measure Exclusive Cross Sections.

Bare σ 's include FSR and exclude VP & ISR:

$$\sigma^{bare}(e^+e^- \to hadrons) = \sigma^{bare}(e^+e^- \to \pi^+\pi^-) + \sigma^{bare}(e^+e^- \to \pi^+\pi^-\pi^0) + \sigma^{bare}(e^+e^- \to K^+K^-) + \cdots$$

2: Integrate Cross Sections Over Known Kernel Function.

Relative importance of exclusive cross sections, ordered by impact on muon (g-2) ... (α_{QED} slightly different)

Err² is used as errors are added in quadrature.

[1]

10 Largest Exclusive Hadronic Final-State Contributions to a^{HVP, LO}

-	<u>۳</u>		
Final State	Contribution to $a_{\mu}^{had, LO}$ [x10 ⁻¹⁰] val ± sta. ± process sys. ± common sys.	Relative Val Contribution [%]	Relative Err ² Contribution [%]
π⁺π⁻	507.80 ± 1.22 ± 2.50 ± 0.56	73.35	46.12
π⁺π⁻π ⁰	46.00 ± 0.42 ± 1.03 ± 0.98	6.64	12.59
K⁺K⁻	21.63 ± 0.27 ± 0.58 ± 0.36	3.12	3.09
π ⁺ π ⁻ π ⁰ π ⁰	18.01 ± 0.14 ± 0.17 ± 0.40	2.60	1.19
π ⁺ π ⁻ π ⁺ π ⁻	13.35 ± 0.10 ± 0.43 ± 0.29	1.93	1.60
K _s ⁰ K _L ⁰	12.96 ± 0.18 ± 0.25 ± 0.24	1.87	0.87
π ^ο γ	4.42 ± 0.08 ± 0.13 ± 0.12	0.64	0.22
$K\bar{K\pi}$ (partly from isospin)	2.39 ± 0.07 ± 0.12 ± 0.08	0.35	0.15
K̄Kππ (partly from isospin)	1.35 ± 0.09 ± 0.38 ± 0.03	0.20	0.88
π⁺π⁻ η	$1.15 \pm 0.06 \pm 0.08 \pm 0.03$	0.17	0.06
Total $a_{\mu}^{had, LO}$	$692.3 \pm 1.4 \pm 3.1 \pm 2.4 \pm 0.2_{\psi} \pm 0.3_{\text{QCD}}$	-	-

[1] G. Rodrigo, Acta Phys. Polon. B 32, 3833 (2001) [arXiv:hep-ph/0111151].

Fixed-energy experiments can measure a full range of center-ofmass energies

[1] G. Rodrigo, Acta Phys. Polon. B 32, 3833 (2001) [arXiv:hep-ph/0111151].

Fixed-energy colliders can measure a wide range of center-of-mass energies via ISR. Example: $e^+e^- \rightarrow \gamma_{ISR}M_{had}$

Fixed-energy colliders can measure a wide range of center-of-mass energies via ISR. Example: $e^+e^- \rightarrow \gamma_{ISR}M_{had} \rightarrow \gamma_{ISR}\pi^+\pi^-\pi^0$

Fixed-energy colliders can measure a wide range of center-of-mass energies via ISR. Example: $e^+e^- \rightarrow \gamma_{ISR}M_{had} \rightarrow \gamma_{ISR}\pi^+\pi^-\pi^0 \rightarrow \gamma_{ISR}\pi^+\pi^-\gamma\gamma$

Fixed-energy colliders can measure a wide range of center-of-mass energies via ISR. Example: $e^+e^- \rightarrow \gamma_{ISR}M_{had} \rightarrow \gamma_{ISR}\pi^+\pi^-\pi^0 \rightarrow \gamma_{ISR}\pi^+\pi^-\gamma\gamma$ *Y*ISR Yhko **Y**_{bkd} **Realistic backgrounds** on all events 8.0 GeV 3.5 GeV **e**⁺ **e**⁻ ĪP π^{-} **π**_{bkd} π^{+} **Y**_{bkd}

Four types of exclusive cross section measurements at Belle:

Direct Measurement

- **1. Machine Operating Energy**
- 2. Scan Over Small Energy Range

Four types of exclusive cross section measurements at Belle:

150°

140

160

LAB θ(ISR) [deg]

180

Direct Measurement

- 1. Machine Operating Energy
- 2. Scan Over Small Energy Range

ISR Measurement

Events

10⁵

10⁴

10³

 10^{2}

20

3. No Tag ISR (missing mass method)

ISR Polar Angle From NLO ISR Event Generator

60

80

100

120

40

Belle Fiducial Volume

4. Tag ISR (measure γ_{ISR})

No Tag ISR => Increased Yield Tag ISR => Suppress Background

$$\sigma_{i} = \frac{N_{i}^{corr}}{L_{i}\varepsilon_{i}^{corr}B(1+\delta_{i}^{rad})}$$

- $\sigma_i = visible$ cross section for ith bin
- *B* = product of any branching ratios (PDG)
- N_i^{corr} = corrected signal yield (background subtractions and mass unfolding)

- $\sigma_i = visible$ cross section for ith bin
- *B* = product of any branching ratios (PDG)
- N^{corr} = corrected signal yield (background subtractions and mass unfolding)
- L_i = integrated luminosity (includes radiator function for ISR analyses)

- *B* = product of any branching ratios (PDG)
- N^{corr} = corrected signal yield (background subtractions and mass unfolding)
- L_i = integrated luminosity (includes radiator function for ISR analyses)
- ε_i^{corr} = corrected detector efficiency (realistic event generator: PHOKHARA for ISR; MC corrections using Data)

- B = product of any branching ratios (PDG)
- N^{corr} = corrected signal yield (background subtractions and mass unfolding)
- L_i = integrated luminosity (includes radiator function for ISR analyses)
- ε_i^{corr} = corrected detector efficiency (realistic event generator: PHOKHARA for ISR; MC corrections using Data)
- δ_i^{rad} = Next-to-leading order ISR radiative corrections are ~5.5% (realistic event generators)

21

Belle has directly measured a number of e⁺e⁻ hadron production cross sections at the machine operating energy

Final State	Year	Int. Lum. [fb ⁻¹]	σ [nb]	E Value [GeV]	Reff. (Slide 36)
Y(1S)π ⁰ π ⁰	2013	121.4	$(1.16 \pm 0.06 \pm 0.10) \times 10^{-3}$	10.86	[S]
Y(2S)π ⁰ π ⁰	2013	121.4	$(1.87 \pm 0.11 \pm 0.23) \times 10^{-3}$	10.86	[S]
Y(3S)π ⁰ π ⁰	2013	121.4	$(0.98 \pm 0.24 \pm 0.15) \times 10^{-3}$	10.86	[S]
φη	2009	516	$(1.4 \pm 0.4 \pm 0.1) \times 10^{-6}$	10.58	[F]
φ η'	2009	516	(5.3 ± 1.1 ± 0.4) × 10 ⁻⁶	10.58	[F]
ρη	2009	516	$(3.1 \pm 0.5 \pm 0.1) \times 10^{-6}$	10.58	[F]
ρη'	2009	516	$(3.3 \pm 0.6 \pm 0.2) \times 10^{-6}$	10.58	[F]
Y(1S)π⁺π⁻	2009	21.7	$(1.61 \pm 0.10 \pm 0.12) \times 10^{-3}$	≈10.87	[T]
Y(2S)π⁺π⁻	2009	21.7	$(2.35 \pm 0.19 \pm 0.32) \times 10^{-3}$	≈10.87	[T]
Y(3S)π⁺π⁻	2009	21.7	$(1.44_{-0.45}^{+0.55} \pm 0.19) \times 10^{-3}$	≈10.87	[T]
Y(1S)K⁺K⁻	2009	21.7	$(0.185^{+0048}_{-0.041} \pm 0.028) \times 10^{-3}$	≈10.87	[T]
$D_{T}^{*+}D_{T}^{*-}$	2004	88.9	< 0.02 × 10 ⁻³ @ 90% CL	10.58	[P]
D _T *+D _L *-	2004	88.9	$(0.55 \pm 0.03 \pm 0.05) \times 10^{-3}$	10.58	[P]
${\sf D}_{\sf L}^{*+}{\sf D}_{\sf L}^{*-}$	2004	88.9	< 0.02 × 10 ⁻³ @ 90% CL	10.58	[P]
D+D ^{*-}	2004	88.9	< 0.006 × 10 ⁻³ @ 90% CL	10.58	[P]
D ⁺ D _T ^{*-}	2004	88.9	$(0.62 \pm 0.03 \pm 0.06) \times 10^{-3}$	10.58	[P]
D+D-	2004	88.9	< 0.04 × 10 ⁻³ @ 90% CL	10.58	[P]

Belle has also directly measured e⁺e⁻ hadron production cross sections via energy scan

Final State	Year	Int. Lum. [fb ⁻¹]	σ ^{max} [nb]	E range [GeV]	Reff. (Slide 36)
ωπ ⁰	2013	913	6.01×10^{-6}	10.52 to 10.876	[U]
K*(892) ⁰ K ⁰	2013	913	10.77 × 10 ⁻⁶	10.52 to 10.876	[U]
K [*] (892)⁻K⁺	2013	913	1.14×10^{-6}	10.52 to 10.876	[U]
K ₂ [*] (1430) ⁰ K ⁰	2013	913	1.65×10^{-6}	10.52 to 10.876	[U]
K ₂ [*] (1430)⁻K⁺	2013	913	8.36 × 10 ⁻⁶	10.52 to 10.876	[U]
Y(1S)π⁺π⁻	2010	8.1	2.14×10^{-3}	10.83 to 11.02	[D]
Y(2S)π⁺π⁻	2010	8.1	5.31×10^{-3}	10.83 to 11.02	[D]
Y(3S)π⁺π⁻	2010	8.1	1.47×10^{-3}	10.83 to 11.02	[D]

Belle has measured a number of high energy (> 3 GeV) e⁺e⁻ hadron production cross sections via ISR

Final State	Year	Int. Lum. [fb ⁻¹]	E range [GeV]	σ _{max} [nb]	Reff. (Slide 36)
π⁺π⁻J/ψ	2013	967	3.8 to 5.5	72 × 10 ⁻³	[A]
ηͿ/ψ	2012	980	3.8 to 5.3	80×10^{-3}	[B]
D _s ⁺ D _s ⁻	2011	967	3.8 to 5	0.45	[C]
D _s ⁺ D _s ^{*-}	2011	967	4 to 5	0.9	[C]
D _s *+D _s *-	2011	967	4.2 to 5	0.5	[C]
$D^0D^{*-}\pi^+$	2009	695	4 to 5.2	0.65	[E]
$\Lambda_{c}^{+}\Lambda_{c}^{-}$	2008	695	4.56 to 5.4	0.55	[1]
D ⁰ D⁻π⁺	2008	673	4 to 5	0.6	[1]
DD	2008	673	3.7 to 5	9	[K]
D+D-	2008	673	3.7 to 5	4	[K]
$D^0 \overline{D^0}$	2008	673	3.7 to 5	5.5	[K]
K⁺K⁻J/ψ	2007	673	4.1 to 6	10×10^{-3}	[L]
π⁺π⁻ψ(2S)	2007	673	4.1 to 5.5	80×10^{-3}	[M]
π ⁺ π ⁻ J/ψ	2007	548	3.8 to 5.5	70 × 10 ⁻³	[N]
D*+D*-	2007	547.8	4 to 5	3.4	[0]
D+D*-	2007	547.8	3.88 to 5	4.6	[0]

Belle still has the opportunity to measure a number of low energy (< 3 GeV) e⁺e⁻ hadron production cross sections via ISR

Final State	Year	Int. Lum. [fb ⁻¹]	E range [GeV]	σ _{max} [nb]	Reff. (Slide 36)
π⁺π⁻η	In prog.	562	0.9 to 3.5	≈4.3	-
π ⁺ π ⁻ π ⁰	In prog.	562	0.73 to 3.5	≈1.5 × 10 ³	-
фπ⁺π⁻	2009	673	1.5 to 3	0.7	[G]

[1] A. Hafner [BaBar Collaboration], Nucl. Phys. Proc. Suppl. 207-208, 133 (2010).

Low energy (> 3 GeV) cross section measurements are focused precision measurements.

Systematic errors, background leakage, and small radiative correction checks to be completed in near future

26

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section.

27

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section.

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section.

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section.

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section.

- This analysis may lock on to the well measured ω and φ resonances.
- Locking on will provide a more precise $\sigma(1.05 \le \sqrt{s} \le 3 \text{ GeV})$.

Belle cross section measurements are also interested in looking at intermediate states.

[1] S. L. Olsen [BESIII Collaboration], "News from BESIII," arXiv:1203.4297 [nucl-ex]. <u>http://docbes3.ihep.ac.cn/~talks/images/5/53/BORMIO2012-seteve.pdf</u>
 [2] B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. D **70**, 072004 (2004) [arXiv:hep-ex/0408078].

The e⁺e⁻ $\rightarrow \pi^+\pi^-\eta$ isovector final-state cross section can be compared to the $\tau^{\pm} \rightarrow \pi^{\pm}\pi^0\eta\nu_{\tau}$ spectral function.

[1] K. Inami et al. [Belle Collaboration], Phys. Lett. B 672, 209 (2009) [arXiv:0811.0088 [hep-ex]].

Conclusion

- A number of high energy (> 3 GeV) cross sections have been measured using Belle data
 - At machine operating energy

10⁻³

10-4

10⁻⁵

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

- Energy scan
- Via ISR
- Few low energy cross sections have been measured via ISR using Belle data
 - <u>Belle data can still contribute a lot to high precession low energy cross section</u> <u>measurements</u>

Final State	Year	Int. Lum. [fb ⁻¹]	E range [GeV]	σ _{max} [nb]	Reff. (Slide 36)	Belle σ 's via ISR
π⁺π⁻η	In prog.	562	0.9 to 3.5	≈4.3	-	
π⁺π⁻π ⁰	In prog.	562	0.73 to 3.5	≈1.5 × 10 ³	-	
φπ⁺π⁻	2009	673	1.5 to 3	0.7	[G]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Land and a second and a second

2.2

hadron invariant mass [GeV]

2.4

35

Produced with

PHOKHARA

List of Belle e⁺e⁻ hadron production cross section references:

[A] Z. Q. Liu et al. [Belle Collaboration], Phys. Rev. Lett. **110**, 252002 (2013) [arXiv:1304.0121 [hep-ex]]. [B] X. L. Wang et al. [Belle Collaboration], Phys. Rev. D 87, 051101 (2013) [arXiv:1210.7550 [hep-ex]]. [C] G. Pakhlova et al. [Belle Collaboration], Phys. Rev. D 83, 011101 (2011) [arXiv:1011.4397 [hep-ex]]. [D] K. –F. Chen et al. [Belle Collaboration], Phys. Rev. D 82, 091106 (2010) [arXiv:0810.3829 [hep-ex]]. [E] G. Pakhlova et al. [Belle Collaboration], Phys. Rev. D 80, 091101 (2009) [arXiv:0908.0231 [hep-ex]]. [F] K. Belous et al. [Belle Collaboration], Phys. Lett. B 681, 400 (2009) [arXiv:0906.4214 [hep-ex]]. [G] C. P. Shen et al. [Belle Collaboration], Phys. Rev. D 80, 031101 (2009) [arXiv:0808.0006 [hep-ex]]. [H] P. Pakhlov et al. [Belle Collaboration], Phys. Rev. D 79, 071101 (2009) [arXiv:0901.2775 [hep-ex]]. [I] G. Pakhlova et al. [Belle Collaboration], Phys. Rev. Lett. 101, 172001 (2008) [arXiv:0807.4458 [hep-ex]]. [J] G. Pakhlova et al. [Belle Collaboration], Phys. Rev. Lett. 100, 062001 (2008) [arXiv:0708.3313 [hep-ex]]. [K] G. Pakhlova et al. [Belle Collaboration], Phys. Rev. D 77, 011103 (2008) [arXiv:0708.0082 [hep-ex]]. [L] C. Z. Yuan et al. [Belle Collaboration], Phys. Rev. D 77, 011105 (2008) [arXiv:0709.2565 [hep-ex]]. [M] X. L. Wang et al. [Belle Collaboration], Phys. Rev. Lett. 99, 142002 (2007) [arXiv:0707.3699 [hep-ex]]. [N] C. Z. Yuan et al. [Belle Collaboration], Phys. Rev. Lett. 99, 182004 (2007) [arXiv:0707.2541 [hep-ex]]. [O] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 98, 092001 (2007) [hep-ex/0608018]. [P] T. Uglov et al. [BELLE Collaboration], Phys. Rev. D 70, 071101 (2004) [hep-ex/0401038]. [Q] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 89, 142001 (2002) [hep-ex/0205104]. [R] K. Abe et al. [BELLE Collaboration], Phys. Rev. Lett. 88, 052001 (2002) [hep-ex/0110012]. [S] P. Krokovny et al. [Belle Collaboration], arXiv:1308.2646 [hep-ex]. [T] K. F. Chen et al. [Belle Collaboration], Phys. Rev. Lett. 100, 112001 (2008) [arXiv:0710.2577 [hep-ex]].

[U] C. P. Shen *et al.* [Belle Collaboration], arXiv:1309.0575 [hep-ex].

Backup Slides

Hadronic final states can be divided into isoscalar and isovector processes

For Example: $e^+e^- \rightarrow \pi^+\pi^-\eta \Leftrightarrow \tau^{\pm} \rightarrow W^{\pm}v_{\tau} \rightarrow \pi^{\pm}\pi^0\eta v_{\tau}$

Hadron spectroscopy involves measuring resonance parameters

Hadron spectroscopy involves measuring resonance parameters Y(4008) Y(4260) [1] 120 Belle Entries/20 MeV/c² 100 80 60 Solution I 40 Solution II 20 0 **L** 3.8 4.2 4.6 4.8 5 5.2 5.4 4.4 $M(\pi^+\pi^- J/\psi)$ (GeV/c²) $J/\psi \rightarrow I^+I^-$ Solution I Solution II Parameters Fits with 2 coherent resonances. $M(R_1)$ $3890.8 \pm 40.5 \pm 11.5$ ϕ (degrees) is relative phase between resonances. $\Gamma_{\rm tot}(R_1)$ $254.5 \pm 39.5 \pm 13.6$ Both fits are equal in quality. $\Gamma_{ee}\mathcal{B}(R_1 \to \pi^+ \pi^- J/\psi) \ (3.8 \pm 0.6 \pm 0.4) \ (8.4 \pm 1.2 \pm 1.1)$ $M(R_2)$ $4258.6 \pm 8.3 \pm 12.1$ $\Gamma_{\rm tot}(R_2)$ $134.1 \pm 16.4 \pm 5.5$ $\Gamma_{ee}\mathcal{B}(R_2 \to \pi^+\pi^- J/\psi) \ (6.4 \pm 0.8 \pm 0.6) \ (20.5 \pm 1.4 \pm 2.0)$ $59 \pm 17 \pm 11$ $-116 \pm 6 \pm 11$

[1] Z. Q. Liu et al. [Belle Collaboration], Phys. Rev. Lett. 110, 252002 (2013) [arXiv:1304.0121 [hep-ex]].

40

Data and Monte Carlo flow through the same analysis chain

Belle has directly measured several inclusive e⁺e⁻ hadron production cross sections near the machine operating energy (≈10.6 GeV)

Final State	Year	Int. Lum. [fb ⁻¹]	σ [nb]	Reff. (Slide 36)
J/ψc c	2009	673	$(0.74 \pm 0.08^{+0.09}_{-0.08}) \times 10^{-3}$	[H]
J/ψX _{non-cc}	2009	673	$(0.43 \pm 0.09 \pm 0.09) \times 10^{-3}$	[H]
J/ψD ^{*+} X	2002	46.2	$(0.53^{+0.19}_{-0.15} \pm 0.14) \times 10^{-3}$	[Q]
J/ψX	2001	32.4	$(1.47 \pm 0.10 \pm 0.13) \times 10^{-3}$	[R]

Narrow resonance vector meson ISR cross sections can provide a cross check on the preliminary Belle $e^+e^- \rightarrow \pi^-\pi^+\pi^0$ cross section. 1st Step:

$\sigma_{ISR} \left(\theta_{ISR}^{\min} < \theta_{ISR} < \theta_{ISR}^{\max} \right) = \frac{N_{signal} - N_{side}}{\varepsilon R I B}$

 σ_{ISR} = ISR cross section

$$\theta_{ISR} = \gamma_{ISR}$$
 polar angle

 θ_{ISR}^{min} = minimum γ_{ISR} polar angle = 25°

 θ_{ISR}^{max} = maximum γ_{ISR} polar angle = 155°

N_{signal} = total number of signal events over resonance

N_{side} = total number of events in side bands

- ε = detector efficiency over resonance
- **R** = radiative corrections
- L = total integrated luminosity
- **B** = branching fraction
- Integrate signal yield over resonance. 1.
- 2. Ignore N_{side} as it is a small correction.
- 3. Ignore R as it is a very small correction.

Results:

2nd Step:

For narrow resonance vector mesons: $\frac{d\sigma_{ISR}(s,\theta_{ISR})}{W(s,x_{v},\theta_{ISR})} = \frac{12\pi^{2}\Gamma(V \rightarrow e^{+}e^{-})B(V \rightarrow f)}{W(s,x_{v},\theta_{ISR})}$ $d\cos\theta_{ISP}$ m s σ_{ISR} = ISR cross section Vs = CMS machine operating energy = 10.58 GeV $\theta_{ISR} = \gamma_{ISR}$ polar angle = [25°, 155°] Γ = resonance width **B** = branching fraction V = vector meson = ω , ϕ , J/ ψ f = hadronic final-state = $\pi^+\pi^-\pi^0$ m_v = vector meson mass W = radiator function = describes γ_{ISR} emission probability. $x_v = 1 - m_v^2/s$

- 1. Integrate differential equation w.r.t. $\cos\theta_{\rm ISR}$, and over the analysis ISR fiducial volume.
- 2. Solve for $\Gamma(V \rightarrow e^+e^-)B(V \rightarrow f)$.

Source	$\Gamma(\omega \rightarrow e^+e^-)B(\omega \rightarrow \pi^+\pi^-\pi^0)$ [eV]	Г(ф → e⁺e⁻)В(ф → π⁺π⁻π⁰) [eV]	Γ(J/ψ→ e⁺e⁻)B(J/ψ → π⁺π⁻π⁰) [eV]	Belle: Sta. Err. only.
Prelim. Belle	563.0 ± 3.2	217.1 ± 2.1	117.3 ± 3.8	
PDG ^[1]	551 ± 13	192.8 ± 4.8	116.4 ± 5.4	PDG: φ → ρπ + π ⁺ π ⁻ π ⁰

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

Preliminary Systematic Uncertainties

Systematic Uncertainty	σ(e+e-→π+π-π0) relative error (%)	Basis
PID Efficiency	2.8*	Efficiency Correction From Data
Track Finding Efficiency	0.7	From Data
Total Integrated Luminosity	1.4	MC Bhabha Generator Accuracy
Trigger Efficiency	Work In Progress	Variation Of Trigger Masks
E(γ) Cuts	1.2	Variation Of Cuts
θ(γ _{ISR}) Cut	3.8*	Variation Of Cuts
Backgrounds	2.8*	Examine Largest Background
PID Cuts	0.94	Variation Of Cuts
Pre-Kfit p ^µ Cuts	0.58	Variation Of Cuts
m(π^0) Signal-Range	0.76	Variation Of Cuts
Total	> 5.9	Add In Quadrature

Goal: Total systematic at the ~5% level

* Conservative estimate: Error can be lowered with more work

Belle cross section measurements are also interested in looking at intermediate states.

