Measurement of the proton electromagnetic form factors at BABAR

Vladimir Druzhinin
NSU/BINP, Novosibirsk
On behalf of the BABAR collaboration

PHIPSI13
International Workshop on e+e- Collisions from Phi to Psi Rome, September 9-12, 2013

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$ cross section

$$
\sigma(s)=\frac{4 \pi \alpha^{2} \beta C(s)}{3 s}\left(\left|G_{M}(s)\right|^{2}+\frac{2 m_{p}^{2}}{s}\left|G_{E}(s)\right|^{2}\right), \quad s=4 E_{b}
$$

C is the Coulomb factor \longrightarrow The cross section is nonzero at threshold. G_{E} and G_{M} are the electric and magnetic form factors, $G_{E}(0)=1, G_{M}(0)=2.79$.

From the measured cross section, a combination of the squared form factors can be extracted. We define

$$
\left|F_{p}(s)\right|=\sqrt{\frac{\left|G_{M}(s)\right|^{2}+\left(2 m_{p}^{2} / s\right)\left|G_{E}(s)\right|^{2}}{1+2 m_{p}^{2} / s}}
$$ the effective form factor:

At large energies the G_{E} term is suppressed as $1 / E^{2}$ and $\left|F_{p}\right| \approx\left|G_{M}\right|$.
The ratio of the form factors $/ G_{E} / G_{M} /$ can be determined from the analysis of the proton polar-angle distribution.

$$
\frac{d \sigma}{d \Omega}(s, \theta)=\frac{\alpha^{2} \beta C(s)}{4 s}\left(\left|G_{M}(s)\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{4 m_{p}^{2}}{s}\left|G_{E}(s)\right|^{2} \sin ^{2} \theta\right)
$$

At threshold $\left|G_{E}\left(4 m_{p}{ }^{2}\right)\right|=\left|G_{M}\left(4 m_{p}{ }^{2}\right)\right|$.

Previous $\mathrm{e}^{+} \mathrm{e}^{-}$experiments

Below 3.2 GeV: ADONE73 (1973), DM1(1979), DM2 $(1983,1990)$, FENICE(1994), BES(2005).

Statistical accuracy of these measurements is (20-30)\%.

Limited statistics do not allow to extract the G_{E} / G_{M} ratio from the analysis of the angular distribution.

Proton-antiproton collisions

Near threshold data were obtained in PS170 experiment at the antiproton storage ring LEAR (CERN):
\checkmark steep growth of the form factor near threshold, \checkmark the ratio $\left|G_{E} / G_{M}\right|$, measured with 30% accuracy in five energy points, agrees with unity.
Above 3 GeV measurements were performed at FNAL (E835 and E760).
The very precise points marked "NU" (Phys. Rev. Lett. 110 (2013) 022002) were obtained using CLEO data ($\sim 1 \mathrm{fb}$) collected at 3.77 and 4.17 GeV .

ISR method

The mass spectrum of the protonantiproton system in the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma$ is related to the cross section for the nonradiative process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$.
$\frac{d \sigma_{e^{+} e^{-} \rightarrow p \bar{p} \gamma}}{d m d \cos \theta}=\frac{2 m}{s} W(s, x, \theta) \sigma_{e^{+} e^{-} \rightarrow p \bar{p}}(m), \quad x=\frac{2 E_{\gamma}}{\sqrt{s}}=1-\frac{m^{2}}{s}$
The function $\mathrm{W}(\mathrm{s}, \mathrm{x}, \theta)$ is calculated in QED. It describes angular ($1 / \sin ^{2} \theta$ at $\theta \gg m_{e} / \sqrt{ } s$) and energy ($1 / x$) distributions of the ISR photon.

ISR method

The ISR photon is emitted predominantly along the beam axis. The produced hadronic system is boosted against the ISR photon. Due to limited detector acceptance the mass region below 3 GeV can be studied only with detected photon (about 10\% of ISR events).
Above 3 GeV statistics can be significantly increased by using small-angle ISR.

Advantages of the ISR method

\checkmark A wide energy region is studied in a single experiment.

The effective ISR luminosity ($\mathrm{pb}^{-1} / \mathrm{GeV}$) increases with mass, partly
compensating a decrease of the measured cross section.
\checkmark A low dependence of the detection efficiency on the hadronic invariant mass Measurement near and above threshold with the same selection criteria.
\checkmark A low dependence of the detection
efficiency on hadron angular distributions (in the hadron rest frame).

For protons this significantly increases sensitivity for measurements of the G_{E} / G_{M} ratio.

BABAR detector

The full data sample collected at and near Y(4S): $469 \mathrm{fb}^{-1}$.
The LA analysis is published in
Phys. Rev. D 87, (2013) 092005,
Phys. Rev. D 73, (2006) 012005 - $232 \mathrm{fb}^{-1}$.
The SA analysis is in arXiv:1308.1795

LA event selection

All final particles must be detected and well reconstructed. $\checkmark 2$ tracks of opposite charges originating from the interaction point and identified as protons $\left(25.8^{\circ}<\theta<137.5^{\circ}\right)$. \checkmark A photon candidate with $\mathrm{E}_{\text {c.m. }}>3 \mathrm{GeV}\left(20.0^{\circ}<\theta<137.5^{\circ}\right)$. \checkmark A kinematic fit to the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-} \gamma$ hypothesis $(\mathrm{h}=\mathrm{p}, \mathrm{K})$ is performed with requirements of energy and momentum conservation.

$$
\chi_{p}^{2}<30, \chi_{K}^{2}>30
$$

Backrounds from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \gamma, \mu^{+} \mu^{-} \gamma$, $\mathrm{K}^{+} \mathrm{K}-\gamma$ exceed signal by 2-3 orders of magnitude.
These backgrounds are suppressed by the PID requirement and χ^{2} cuts by a factor of 10^{6} for pions and muons, and 3×10^{5} for kaons.

Background for LA selection

- The main background arises from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0}$ events with an undetected lowenergy photon or with merged photons from the π^{0} decay.
- This background is estimated from a control sample of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0}$ events. - Increases from 5% at $\mathrm{M}_{\mathrm{pp}}<2.5 \mathrm{GeV}$ to 50% at 4 GeV .
- All observed data events above 4.5 GeV are explained by this background.
data
8298
7741 ± 113
448 ± 42
ISR and e $^{+{ }^{-}}{ }^{-}$

Background from $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation processes other than $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0}$ and ISR processes such as $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi_{0} \gamma, \mathrm{p} \overline{\mathrm{p}} 2 \pi_{0} \gamma$ is estimated using difference of the χ^{2} distributions for signal and background events and subtracted.

SA event selection

$\checkmark 2$ tracks of opposite charge originating from the interaction point and identified as protons ($25.8^{\circ}<\theta<137.5^{\circ}$).

$$
\checkmark P_{T}<0.15 \mathrm{GeV} / \mathrm{c}
$$

$\checkmark\left|\mathrm{M}^{2}{ }_{\text {rec }}\right|<1 \mathrm{GeV}^{2} / \mathrm{c}^{4}$

Background for SA ISR

$149<1 \quad 1.6 \pm 09 \quad 6.3 \pm 3.5$
$>$ The dominant background process is $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0} \gamma$
$>$ The main background in our large-angle ISR analysis frome $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0}$ is found to be negligible.

Angular distribution

- θ_{p} is the angle between the proton momentum in the $p \bar{p}$ rest frame and the momentum of $p \bar{p}$ system in the $\mathrm{e}^{+} \mathrm{e}^{-}$c.m. frame.
- The distribution is fitted by a sum of histograms obtained from two simulated event samples, one with $G_{E}=0$ and other with $G_{M}=0$.
- These distributions are close to $1+\cos ^{2} \theta_{p}$ and $\sin ^{2} \theta_{p}$.

Asymmetry in the angular distribution

- The asymmetry is absent in lowest order $\left(\gamma^{*} \rightarrow \mathrm{p} \overline{\mathrm{p}}\right)$. It arises from higher-order contributions (soft extra ISR and FSR interference, two-photon exchange). Measuring the asymmetry we control the higher-order contributions.
- Our simulation uses a model with one-photon exchange. The asymmetry in the simulated distribution is due to an asymmetry in the detection efficiency.
- We analyze the difference between the measured and fitted distributions.
- The slope is $-0.041 \pm 0.026 \pm 0.005$
- The integral asymmetry

$$
A=\frac{\sigma\left(\cos \theta_{\mathrm{p}}>0\right)-\sigma\left(\cos \theta_{\mathrm{p}}<0\right)}{\sigma\left(\cos \theta_{\mathrm{p}}>0\right)+\sigma\left(\cos \theta_{\mathrm{p}}<0\right)}=-0.025 \pm 0.014 \pm 0.003
$$

Measured cross section

Mass-independent systematic uncertainty is $4-5 \%$ for large-angle ISR. For small-angle ISR it decreases from 16% at 3 GeV to 6% at 4.5 GeV .
\checkmark In the mass region under study the cross section changes by about six orders of magnitude.
\checkmark Our data are in reasonable agreement with previous measurements \checkmark We improve accuracy and extend the mass region of measurements.

Effective proton form factor

QCD-motivated fit

The local deviations of the "NU" points from the global fit may be result of the $\psi(3770)$ and $\psi(4160)$ resonance contributions.

Comparison with the space-like G_{M}

Data points with largest errors were excluded

\square The points "SLAC 1993" represent data on the spacelike magnetic form factor measured in ep scattering as a function of $\sqrt{ }-q^{2}$.
\square The asymptotic values of the space- and time-like form factors are expected to be the same.
\square In the mass region from 3.0 to 4.5 GeV the time-like form factor is about two-three times larger than the space-like one.
\square The new BABAR SA ISR measurements give an indication that the difference between the time- and space-like form factors decreases with mass increase.

J / ψ and $\psi(2 \mathrm{~S})$ decays

 SA ISR

	$\mathrm{B}(\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}) \times 10^{3}$
SA	$2.33 \pm 0.08 \pm 0.09$
LA	$2.04 \pm 0.07 \pm 0.07$
PDG	2.120 ± 0.029

	$\mathrm{B}(\psi(2 \mathrm{~S}) \rightarrow \mathrm{p} \overline{\mathrm{p}}) \times 10^{4}$
SA	$3.14 \pm 0.28 \pm 0.18$
LA	$2.86 \pm 0.51 \pm 0.09$
PDG	2.75 ± 0.12

Summary

\square The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$ cross section and the proton effective form factor have been measured from threshold up to 6.5 GeV using the full BABAR data sample.
The form factor has complex mass dependence. There are a near-threshold steep falloff and a step-like behavior at higher masses.
\square The $\left|G_{E} / G_{M}\right|$ ratio has been measured from threshold to 3 $\mathrm{GeV} / \mathrm{c}^{2}$. A large deviation of this ratio from unity is observed below $2.2 \mathrm{GeV} / \mathrm{c}^{2}$.
Asymmetry in the proton angular distribution have been measured.
\square At masses above 3 GeV the observed decrease of the form factor agrees with the asymptotic dependence $\alpha_{s}{ }^{2}(\mathrm{~m}) / \mathrm{m}^{4}$ predicted by QCD.

