

Results and Perspectives on Baryon Form Factors from SND and CMD3

Sergey Serednyakov Novosibirsk State University Budker Institute of Nuclear Physics

Outline

Description of nucleon Form Factors
 VEPP-2000 data
 e⁺e⁻ → p p̄ from CMD3
 e⁺e⁻ → p p̄ from SND
 e⁺e⁻ → n n̄ from SND
 Conclusions, perspectives

$$e^+e^- \to N\overline{N} \text{ cross section}$$
Differential cross
section:
$$\sigma(e^+e^- \to B\overline{B}) = \frac{\alpha^2\beta C^2}{4m^2} \left(|G_M|^2 (1 + \cos^2\theta) + \frac{4m_B^2}{m^2} |G_E|^2 (1 - \cos^2\theta) \right)$$
Total cross
section:
$$\sigma(e^+e^- \to B\overline{B}) = \frac{4\pi\alpha^2\beta C}{3m^2} \left(|G_M|^2 + \frac{2m_B^2}{m^2} |G_E|^2 \right)$$
Effective form
factor
$$|F|^2 = \frac{|G_M|^2 + |G_E|^2 / 2\tau}{1 + 1/2\tau}, \quad \tau = \frac{m^2}{4m_B^2}$$
Two measurable values:
$$1 - \text{effective FF}, \quad 2 - G_E/G_M$$
C for protons : $c = y/(1 - e^{-y}), y = \pi\alpha/\beta$ C=1 for neutrons

At threshold : $s=4m_B^2 \rightarrow |G_E| = |G_M| = |F|$

Asymptotic prediction: $F(+\infty) = -F(-\infty) \sim 1/s^2$

S

PhiPsi2013

Existing data on TL FF and GE/GM for proton and neutron

Babar: PRD 87,092005(2013)

FENICE: NP B517, 3(1998)

Data, 1.8 - 2.0 GeV (SND)

2011- 4.5 pb⁻¹
2012 - 5.8 pb⁻¹,
Above N
$$\overline{N}$$
 threshold - 5.7 pb⁻¹,
L_{av} - 5. 10³⁰ cm⁻²s⁻¹,
L_{max} - 10³¹ cm⁻²s⁻¹,

Advantages compared to previous CMD-2:

- * new drift chamber with x2 better resolution, higher B field
 - better tracking better momentum resolution
- X thicker barrel calorimeter (8X₀->15X₀)
- better particle separation
- X LXe calorimeter measurement of conversion point for γ's shower profile
 X TOF system
 - time separation for p

1 - vacuum tube, 2 - drift chamber, 3 - calorimeter BGO (680 crystals), 4 - Z-chamber, 5 - CMD-3 superconducting solenoid, 6 - calorimeter LXe (400 liters), 7 - calorimeter CsI (1152 crystals), 8 - magnet yoke, 9 - solenoids of VEPP-2000, (not shown) muon range system and TOF system

SND

1 – beam pipe, 2 – tracking system, 3 – aerogel, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – muon absorber, 7–9 – muon detector, 10 – focusing solenoid.

NIM A449 (2000) 125-139

Advantages for VEPP-2000: 1- cherenkov counter, n=1.05, 1.13 – e/π separation E<450 MeV, π/K separation E<1 GeV, 2 –drift chamber – better tracking, 3- time of flight in ECAL (будущий)

PhiPsi2013

$e^+e^- \to p\overline{p} \ from \ CMD3$

$e^+e^- \rightarrow p\bar{p}$, CMD3, preliminary

$e^+e^- \rightarrow p\bar{p} \text{ from SND}$

 $e^+e^- \rightarrow p\bar{p}$, SND

Two typical event signatures in SND

e⁺e⁻ →pp̄, SND

Main selection criteria Two collinear tracks $E_{tot} > 650 \text{ MeV}$ in EMC High dE/dx $E_p < 200 \text{ MeV}$ in EMC

Detection efficiency $\epsilon = 0.22 - 0.29$

$e^+e^- \rightarrow p\bar{p}$, SND, preliminary

Effective proton form factor data

11.09.2013

17

Cos θ , e⁺e⁻ \rightarrow pp̄, SND

11.09.2013

$e^+e^- \rightarrow p\bar{p}$

Comparison of CMD3, SND, Babar data, E_{beam}=960-1000MeV

	CMD-3	SND	Babar
σ_{av} (nb)	0.90 ± 0.02	0.855 ± 0.03	0.855 ± 0.039
G _E /G _M		1.64 ± 0.26	1.42 ± 0.09

CMD3, SND – only stat.error

$e^+e^- \rightarrow n\overline{n} \ from \ SND$

e⁺e⁻ →nīn (SND)

Both n, \bar{n} are alike photon or K_L , \bar{n} gives huge energy release ~ $2M_n$, \bar{n} absorbtion length in NaI(TI) ~5-15 cm, EMC calorimeter thickness =35 cm, Most n, \bar{n} interact in EMC

Events types:

- All e⁺e⁻ interactions,
- e⁻ or e⁺ bkgd,
- Cosmic
- n n events

Suppression cuts

- no tracks, photons from centre
- E_{tot} > E_{beam} , in EMC
- muon system veto,
- no cosmic tracks in EMC

Detection efficiency 18-25%

11.09.2013

PhiPsi2013

22

e+e⁻ →nīn

$$\sigma = \frac{n - xT}{\varepsilon \delta L} - \sigma_{th}$$

n - number of events

 σ - cross section, X~1.5 10⁻³ Hz - cosmic T- run time,

 $\boldsymbol{\varepsilon}$ – detection efficiency,

 $\delta-$ radiative correction,

L – luminosity,

 σ_{th} ~0.2 nb - threshold cross section

11.09.2013

$e+e^{-} \rightarrow n\bar{n}$ Cross section before and after cosmic subtraction

11.09.2013

PhiPsi2013

$e^+e^- \rightarrow n\bar{n}$, systematics

- 1. Cosmic subtraction ~ 0.1 nb
- 2. Detection efficiency ~ 0.2 nb
- 3. Threshold background ~ 0.1 nb
- 4. Luminosity 3%

Total error 0.25 nb (~30%)

e⁺e⁻ →nn̄ cross section

26

Neutron effective TL form factor

Comparison of proton and neutron FFs

Cos θ , $|G_E/G_M|$, $e^+e^- \rightarrow n\bar{n}$, SND

11.09.2013

PhiPsi2013

Conclusions

 e⁺e⁻ → pp process cross section has been measured by SND and CMD-3
 e⁺e⁻ → nn process cross section has been measured by SND
 G_E/G_M ratio for pp and |G_E/G_M|² for nn has been measured by SND

Perspectives

- 1. Final results on nucleons form factors are expected soon
- 2. New laser calibration energy with ~ 0.1 MeV precision is ready
- 3. New positron source will provide integrated luminosity higher than 100 pb⁻¹.

Thank you for attention