Status and prospects of Muon g-2 experiment at J-PARC

Katsu Ishida (RIKEN) for muon g-2/EDM collaboration E34 at J-PARC

> PHIPSI13 (Rome) 9-12 Sep 2013

muon g-2

Discrepancy (~3.6 σ) between theory and measurement (BNL E821) need to be solved. An improved measurement is planned at FNAL. muon precession frequency in the uniform magnetic field

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left[a_{\mu} - \frac{1}{\gamma^2 - 1} \right] \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

magic γ (p=3.09 GeV/c) is used for BNL/FNAL muon g-2
Storage ring size is 14m

New muon g-2 measurement at J-PARC How is it different ?

Different approach was proposed at J-PARC (See N. Saito in PHIPSI11)

We do not use focusing electric field => E=0

How is it possible?

Starting from thermal energy muon, we make ultra-cold muon beam so that beam focusing field is not needed

σ (p_T) / $p_L \le 10^{-5}$

=> Free from 3 GeV/c magic momentum. Use of MRI-type magnet as muon storage ring.

muon g-2 at J-PARC: Concept

J-PARC

High intensity Japan Proton Accelerator Research Complex 1 MW at 3 GeV (0.3 MW at present), 1 MW at 50 GeV

H-line at J-PARC MLF

MLF (Materials and Life Science Facility) : intense pulsed neutron and muon beams

to muon g-2

high intensity surface muon beam will be obtained $(1^{4} \times 10^{8} / s@4 \text{ MeV})$

The beamline will be used also for MuHFS (-> H. Torii, 12 Sep) -> Synergy in ultra precision magnet, field measurement, detector development

-> Also new improved muon mass for g-2

3 GeV proton beam and production target

Ultra cold muon production: Thermal muonium emission

Stop muons in a material, some diffuse out at thermal energy. Good muonium emitter and an intense laser to remove the electron are essential.

Silica powder has been known to be a good Mu emitter at room temperature Mu diffuse out through network of SiO₂ grains (large surface area)

Silica aerogels with similar network structure can be more easily handled and may fit better our system

Ultra cold muon production materials study at TRIUMF (a) Side view (b) Front view Target Veto & Beam y **MWDC** MCP Counters NaI beam ► X Vacuum Electric Ferrite magnet e+ field cage trigger & iron yoke μ^+ Tracking back of positrons from muon decay vacuum => muonium distribution in vacuum => emission efficiency Muonium Target $N\mu$ (in vacuum)/ $N\mu$ (in target)

Ultra cold muon production materials study at TRIUMF

to appear in PTEP, arxiv:1306.3810

Ultra cold muon production: materials study at TRIUMF

The first measurement showed the efficiency from silica aerogel was more than 5 times smaller than that for the silica powder.

We plan to carry out another measurement in October

to test the aerogel samples with the sample surface area artificially increased.

~5 times increase of emission is expected from simulation based on diffusion model

Laser drilling

Ultra-cold muon production - ionizing Lyman- α laser

High power (x100) Lyman- α laser is under development at RIKEN.

To be completed soon, expect ionization efficiency >70%

Muon acceleration

Acceleration from 0.03 eV to 0.3 GeV (x10¹⁰) in the muon lifetime without heating

RFQ

IH linac

Disk loaded structure

KEKB/J-PARC accelerator group + TITech + Kyoto Beam simulations in progress. Muon acceleration test being planned at J-PARC

Spiral muon injection

Kicker will stop vertical muon motion (7~9 mrad) in the muon storage area

Test kicker coil was produced B~10G, Δ T~150ns(in 20 turns of muon)

Detectors

Silicon strip tracker

240 mm (radial) x 400 mm (axial)

48 vanes

Trackback resolution d $\sigma_{r} \, {}^{\sim} \, 1mm$

Track reconstruction study (KEK-RIKEN-LPNHE) t=5-10ns, signal~14 effic. >97% for single track, ~80% for multi-track so far

Test detector module (KEK) Studies on rate effects Impact to precision B-field and E-field Frontend ASICs under development (KEK)

Statistics comparison

	BNL-E821	Fermilab	J-PARC*
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		Very weak magnetic
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

*J-PARC statistics based on 1 x 10⁶/s ultra-cold muons and 1 year measurement

Status and milestones

Conceptual Design Report was presented at J-PARC PAC (13 Jan 2012) The proposal was given stage 1 approval as E34 (21 Sep 2012) Members are growing (more than 98 members)

Several milestones

- M1) Demonstration of the ultra-cold muon production with the required conversion efficiency leading to an intensity of $1 \times 10^6 \mu^+/s$.
- M2) Muon acceleration tests with the baseline configuration of low- β muon LINAC, i.e. RFQ, and IH LINAC.
- M3) Tests of the spiral injection scheme.
- M4) Production of a prototype magnet and development of the field monitor with the required precision.
- M5) Demonstration of rate capability of the detector system for decay positron detection.

Summary

A new muon g-2 measurement was proposed at J-PARC and is under preparation.

The project use different approach from BNL/FNAL g-2 and involves several new interesting R&Ds.

We are working to achieve ultra-cold muon beam at the required intensity.

Key components will be tested soon.

Progress also in other several aspect of milestones