Study of the rare decay $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ and high precision measurement of the form factors of the semileptonic decays $K \rightarrow \pi^0 \ell \nu$

Dr. M. Raggi

INFN – Laboratori Nazionali di Frascati

on behalf of the NA48/2 and NA62 collaborations

Outline

- The NA48/2 experiment
- Beam line, detector, and data taking periods
- Semileptonic Kaon decays
- **\square** Recent results on K μ 3 and Ke3 Form Factors slopes
- KQ3 form factor slopes fits status
- **D** Recent result of NA48/2 and NA62 on $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$
- Conclusions

The NA48/2 and NA62 beam line

Simultaneous K⁺ and K⁻ beam with $N_{K+}/N_{K-} \sim \frac{1}{2}$

NA48/2 Data taking:

4 months in 2003 (K[±]) + 4 months in 2004 (K[±])

NA62-RK Data taking:

2007 mostly K⁺

0.125 0.13 0.135 0.14 0.145 K momentum mass [GeV/c²] Events/(GeV/c) 220 Data 200 MC-Sum 55 Kaon energy [GeV] 60 NA48/2=60±2.2 GeV/c NA62 = 74±1.4 GeV/c Beams within 1 mm

The NA48/2 and NA62 detector

Magnetic Spectrometer

NA 62

- 4 drift chambers and a dipole magnet

$$\frac{\sigma(p)}{p}_{NA48} = (1.02 \oplus 0.044 p)\%$$

$$\sigma(p) \qquad \qquad \text{pin GeV}$$

 $=(0.48 \oplus 0.009 p)\%$

Liquid Krypton EM calorimeter (LKr)

- High granularity (13248 cells of 2x2 cm²)
- Quasi-homogeneous, 7m³ liquid Kr (27X₀)

$$\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.4\%$$
 E in GeV

The K⁺ semileptonic decays

■ $K^{\pm} \rightarrow \pi^{0} \ell^{\pm} v$ decays provide the most accurate and theoretically cleanest way to access $|V_{US}|$:

$$\Gamma(K_{\ell^{3}(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} m_{K}^{5}}{192\pi^{3}} S_{EW} |V_{US}|^{2} |f_{+}(0)|^{2} I_{K}^{\ell}(\lambda_{+0}) (1 + \delta_{SU(2)} + \delta_{EM}^{\ell})^{2}$$

Experimental Inputs:

- **Γ(K(3)** Branching ratios and Kaon lifetimes
- I I_{K}^{ℓ} (λ_{+0}) Phase space integral depends on the form factors

Theory Inputs:

- S_{EW} Universal short distance EW corrections(1.0232±0.0003)
- $I_{+}(0) \text{ Form factor at zero momentum transfer}(0.959(5))_{(EPJC 69 2010, 399-424)}$
- $\delta_{SU(2)}$ Correction for isospin breaking (ch. mode only ~(2.9±0.4)%)
- **\Box** δ^{ϱ}_{EM} Long distance EM effects

Kl3 Form Factors

Hadronic matrix element:

 $\langle \pi | J_{\alpha} | K \rangle = f(0) \times \left[\tilde{f}_{+}(t) (P+p)_{\alpha} + \tilde{f}_{-}(t) (P-p)_{\alpha} \right]$

 $f_{\rm l}$ term multiplied by $m_{\rm l}$ when contracted with leptonic current

Ke3 decays: Only vector form factor: $\tilde{f}_{+}(t)$

Kµ3 decays: Also need scalar form factor: $\tilde{f}_0(t) = \tilde{f}_+ + \tilde{f}_- \frac{t}{m_K^2 - m_\pi^2}$

 $f_+(0)$ cannot be directly measured, therefore the form factors are normalised to $f_+(0)$:

$$\tilde{f}_{+}(t) = \frac{f_{+}(t)}{f_{+}(0)} \qquad \qquad \tilde{f}_{0}(t) = \frac{f_{0}(t)}{f_{+}(0)}$$

For V_{us} , need integral over phase space of squared matrix element Parameterize form factors and fit distributions in t (or related variables)

K(P)

 $\pi(p)$

t = (P)

Form Factor parameterizations

Linear and quadratic parameterization (Taylor expansion):

$$\tilde{f}_{+,0}(t) = 1 + \lambda_{+,0} \left(\frac{t}{m_{\pi^+}^2}\right)$$
$$\tilde{f}_{+,0}(t) = 1 + \lambda_{+,0}' \left(\frac{t}{m_{\pi^+}^2}\right) + \lambda_{+,0}'' \left(\frac{t}{m_{\pi^+}^2}\right)^2$$

Notes:

Many parameters: $\lambda_{+}', \lambda_{+}'', \lambda_{0}', \lambda_{0}''$ Large correlations, unstable fits Limited sensitivity to $\lambda''_{+,0}$

Pole parameterization:

Assumes the exchange of vector and scalar resonances K* with spin-parity 1–/0+ and masses $m_{\rm V}/m_{\rm S}$,

 $f_{+}(t)$ described by K*(892), for $f_{0}(t)$ no obvious dominance is seen:

$$\tilde{f}_{+}(t) = \frac{m_{V}^{2}}{m_{V}^{2} - t} \qquad \qquad \tilde{f}_{0}(t) = \frac{m_{S}^{2}}{m_{S}^{2} - t}$$

Dispersion relations:

$$\tilde{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}(\Lambda_{+} - H(t))\right] \qquad \qquad \tilde{f}_{0}(t) = \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}}(\ln C - G(t))\right]$$

Not yet used in NA48/2 analysis. (PLB 638(2006) 480, PRD 80(2009) 034034)

180

MC-

Mauro Raggi LNF, PhiPsi 2013 Rome

Pion with E/P > 0.95 can fake a K[±]_{e3} decay: π⁰e_{fake} + missing E
 Missing energy coming from wrong assignment of electron mass to π⁺
 π⁺π⁰ will in any case have a small P_T due to no missing momentum

- Keep only events with: p^T_{event} >0.02 GeV/c
 - Background contamination reduced to < 0.1%</p>
 - Only about 3% of genuine K[±]_{e3} events are lost

$\pi^+\pi^0$ background Kµ3

Pion-Pt vs inv PiPi-Mass

Dalits Plot PiPi0 background

• $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ with $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ has same final state of the signal 2γ and 1μ

- Without suppression, $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ background at the level of 20%
- Cut in the invariant $\pi^{\pm}\pi^{0}$ mass and the transverse momentum of the pion:
 - Background contamination reduced to 0.5%
 - About 24% of $K^{\pm}\mu$ 3 events are lost
 - Background is well localized in the Dalitz plot

Data – MC comparison $E_{\pi 0}^*$

Kµ3 data sample
2.5x10⁶ Kµ3 events
0.5% BG from K[±]→π[±]π⁰

Ke3 data sample 4.0x10⁶ Ke3 events BG <0.1% from $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$

11

Radiative corrections

The Kl3 decay rate including first order radiative corrections can be written as:

$$\Gamma_{K\ell3} = \Gamma^0_{K\ell3} + \Gamma^1_{K\ell3} = \Gamma^0_{K\ell3} (1 + 2\delta_{EM})$$

Simulation code provided by KLOE: author C. Gatti, EPJ C45 (2006) 417

Parameters used for the normalization:

Mode	δ _{EM} (%)		
К [±] еЗ (јнер 11 (2008) 006)	0.050±0.125		
К±μЗ (ЈНЕР 11 (2008) 006)	0.008±0.125		

Effects on the Ke3 acceptance are bigger with respect to K μ 3:

~10% effect on the Dalitz plot slope for Ke3

Form factors fitting procedure

To extract the form factors a fit to the Dalitz plot density is performed:

FF fit preliminary results

NA48/2 Form Factors fits preliminary results

Quadratic $(\times 10^{-3})$	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0
$K_{\mu 3}^{\pm}$	$26.3\pm3.0_{\rm stat}\pm2.2_{\rm syst}$	$1.2\pm1.1_{\rm stat}\pm1.1_{\rm syst}$	$15.7\pm1.4_{\rm stat}\pm1.0_{\rm syst}$
K_{e3}^{\pm}	$27.2\pm0.7_{\rm stat}\pm1.1_{\rm syst}$	$0.7\pm0.3_{\rm stat}\pm0.4_{\rm syst}$	
Pole (MeV/c^2)	m_V		m_S
$K^{\pm}_{\mu 3}$	$873\pm8_{\mathrm{stat}}\pm9_{\mathrm{syst}}$		$1183\pm31_{\rm stat}\pm16_{\rm syst}$
K_{e3}^{\pm}	$879\pm3_{\rm stat}\pm7_{\rm syst}$		

Systematic errors

v ±	$\Delta\lambda'_+$	$\Delta\lambda_{+}^{\prime\prime}$	$\Delta\lambda_0$	Δm_V	Δm_S	 V [±]	$\Delta\lambda_{\perp}'$	$\Delta\lambda_{+}^{\prime\prime}$	Δm_V
$\mathbf{n}_{\mu 3}$		$\times 10^{-3}$		MeV	V/c^2	κ _{e3}	$\times 10$	$)^{-3}$ '	MeV/c^2
Kaon Energy	± 0.1	± 0.0	± 0.3	±1	± 8	Kaon Energy	± 0.3	± 0.1	± 6
Vertex	± 1.0	± 0.5	± 0.1	± 2	± 7	Vertex	± 0.2	± 0.1	± 0
Bin size	± 0.8	± 0.4	± 0.7	± 3	± 10	Bin size	+0.0	+0.1	+2
Energy scale	± 0.3	± 0.1	± 0.1	± 0	± 1	Energy scale	± 0.0 ± 0.1	± 0.1	+0
Acceptance	± 0.2	± 0.1	± 0.3	± 2	± 5	Accontoneo	± 0.1 ± 0.2	± 0.0	± 0 ± 2
$K_{2\pi}$ background	± 1.7	± 0.5	± 0.6	± 3	± 0	Acceptance	± 0.2	± 0.0	± 3
2nd Analysis	± 0.1	± 0.1	± 0.2	± 2	± 5	2nd Ana	± 0.9	± 0.4	± 1
FF input	± 0.3	± 0.8	± 0.1	± 7	± 3	FF input	± 0.4	± 0.0	±1
Systematic	± 2.2	±1.1	± 1.0	± 9	± 16	Sytematic	± 1.1	± 0.4	± 7
Statistical	± 3.0	± 1.1	± 1.4	± 8	± 31	 Statistical	± 0.7	± 0.3	± 3

T z +

Fit results comparison

Combined quadratic fit results for Kl3 decays.

The ellipses are 68% CL contours.

For comparison the combined fit from the FlaviaNet kaon working group is shown in yellow. Eur. Phys. J. C 69, 399 (2010)

Mauro Raggi LNF, PhiPsi 2013 Rome 11/09/2013

FF fit preliminary results: combined

Quadratic $(\times 10^{-3})$	λ'_+	λ''_+	λ_0
$K_{\mu3}^{\pm}K_{e3}^{\pm}$ combined	26.98 ± 1.11	0.81 ± 0.46	16.23 ± 0.95
Pole (MeV/c^2)	m_V		m_S
$K_{\mu3}^{\pm}K_{e3}^{\pm}$ combined	877 ± 6		1176 ± 31

Status of experimental measurements

- K_{L}^{0} →23: KLOE, KTeV and NA48
- $K^- \rightarrow l3$: from ISTRA+
- $K^{\pm} \rightarrow \ell 3$: NA48/2 has the first measurement with Ke3 and Kµ3
- $\hfill NA48/2$ results for Ke3 and Kµ3 are in good agreement
- NA48/2 combined result has the smallest error.

Mauro Raggi LNF, PhiPsi 2013 Rome 11/09/2013

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay theory

In the ChPT framework the differential rate of the decay $K^{\pm}(p) \rightarrow \pi^{\pm}(p_3)\gamma(q_1)\gamma(q_2)$ process (no O(p²) contribution) is:

$$\frac{\partial^{2}\Gamma}{\partial y \partial z} = \frac{m_{K^{\pm}}}{\left(8\pi\right)^{3}} \cdot \left[z^{2} \cdot \left(\left|A+B\right|^{2}+\left|C\right|^{2}\right) + \left(y^{2}-\frac{1}{4}\lambda\left(1,z,r_{\pi}^{2}\right)\right)^{2} \cdot \left(\left|B\right|^{2}+\left|D\right|^{2}\right)\right] \quad y = \frac{p \cdot (q_{1}-q_{2})}{m_{K^{\pm}}^{2}}$$

$$z = \frac{m_{\gamma\gamma}^{2}}{m_{K^{\pm}}^{2}}$$
relevant only @ low m_{\gamma\gamma}

The leading O(p⁴) contribution is given by A(z,ĉ) (loops) which is responsible for a cusp at $m_{\gamma\gamma} = m_{2\pi}$

$$\Gamma_A = (2.80 + 0.87\hat{c} + 0.17\hat{c}^2) \cdot 10^{-20} MeV$$

C (WZW) corresponds to ~10% of A at O(p⁴) [Ecker, Pich, de Rafael, Nucl. Phys. B303 (1988), 665]

B, $D = 0 @ O(p^4)$

The ĉ value can be related to fundamental ChPT parameters: [D'Ambrosio, Portoles, PLB 386 (1996), 403]

$$\hat{c} = \frac{128\pi^2}{3} \left[3(L_9 + L_{10}) + N_{14} - N_{15} - 2N_{18} \right]$$

Weak Chiral Lagrangian QCD loop and counterterms

Mauro Raggi LNF, PhiPsi 2013 Rome

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay, ChPt O(p⁴) vs O(p⁶)

■ O(p⁶) loop amplitude correction, evaluated from K $\rightarrow 3\pi$ @ O(p⁴) ■ O(p⁶) A term gets y dependence, sizable correction to d Γ /dz for z<z+

O(p⁶) unitarity corrections may increase the BR by 30÷40% [D'Ambrosio, Portolés, PLB386 (1996) 403]

Mauro Raggi LNF, PhiPsi 2013 Rome	
-----------------------------------	--

11/09/2013

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay experimental status

NA48/2 main data set preliminary 2003/2004: measurement hindered by low trigger efficiency. Abandoned!

New strategy: minimum bias trigger samples from NA48/2 and NA62.

- 2004 data taking (66 hours special minimum bias run)
- 2007 data taking (3 month control trigger downscaled by 20)

Minimum bias data samples

~300 candidates 10 times the present world sample

Mauro Raggi LNF, PhiPsi 2013 Rome 11/09/20	13
--	----

Model independent BR NA48/2

z range	N_j	N_j^B	A_j	$\mathcal{B}_j \times 10^6$
0.20 - 0.24	13	4.89	0.194	0.045 ± 0.020
0.24 - 0.28	9	2.73	0.198	0.034 ± 0.016
0.28 - 0.32	18	2.33	0.194	0.087 ± 0.024
0.32 - 0.36	33	1.30	0.190	0.180 ± 0.033
0.36 - 0.40	31	0.98	0.184	0.177 ± 0.033
0.40 - 0.44	18	1.61	0.173	0.103 ± 0.027
0.44 - 0.48	23	1.21	0.135	0.175 ± 0.038
z > 0.48	4	0.52	0.049	0.076 ± 0.044

Sufficiently small **z** bins: acceptance almost independent of kinematical distribution

FINAL NA48/2 Model Independent BR: BR_{MI}(z>0.2) = (0.877 ± 0.087_{stat} ± 0.017_{syst})x10⁻⁶

Mauro Raggi LNF, PhiPsi 2013 Rome

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ ChPT fit O(p⁶) (preliminary)

External parameters of the O(p⁶) fit:

K3π amplitude parameters: from fit to experimental data [NPB648 (2003) 317];

Polynomial contributions: η_1 =2.06, η_2 =0.24, η_3 =-0.26

[PLB386 (1996) 403].

23

Combined fit results (preliminary)

NA48/2 and NA62-RK combined ChPT O(p⁴) fit: $\hat{c} = 1.56 \pm 0.22_{stat} \pm 0.07_{syst} = 1.56 \pm 0.23$

NA48/2 and NA62-RK combined ChPT O(p⁶) fit: $\hat{c} = 2.00\pm0.24_{stat}\pm0.09_{syst} = 2.00\pm0.26$

Using ChPT formulation: D'Ambrosio, Portolés, PLB386 (1996) 403

Combined Model Dependent BR in full phase space: $BR_{Op6} = (1.01 \pm 0.06) \times 10^{-6}$

To be compared with PDG(BNL E787): $BR_6 = (1.10\pm0.32)\times10^{-6}$

Summary and outlook

- NA48/2 has released a preliminary results on the K[±]ℓ3 form factors:
 - Quadratic and Pole parameterizations used
 - First results studying both K⁺ and K⁻ decays
 - Competitive result for Kµ3 and smallest error for Ke3 and combined fits
 - Possibility to remeasure K[±]l3 BR and form factors in NA62-RK data set
 - A K⁰_L data set has been also collected allowing measurement in neutral kaons as well
- **I** $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay has been studied in NA48/2 and NA62-RK data sets
- NA48/2 final result on model independent branching ratio: BR_{MI}(z>0.2)=(0.877±0.087_{stat}±0.017_{syst})x10⁻⁶
- NA48/2 and NA62-RK combined Model Dependent BR in full phase space: $BR_{Op6}=(1.01\pm0.06)\times10^{-6}$ preliminary
- Measurement of ĉ NA48/2 and NA62-RK combined ChPT O(p⁶) fit:

 $\hat{c} = 2.00 \pm 0.24_{stat} \pm 0.09_{syst} = 2.00 \pm 0.26$ preliminary

Back up slides

11/09/2013

$\pi^{\pm}\pi^{0}\pi^{0}$ background

- Background to Kµ3
 - $\pi \rightarrow \mu$ decay + 2 lost photons from π^0 -decays.
 - **Small** but introduces slope in the Dalitz plot.
 - No dedicated cut to reduce the background is applied.
 - A correction is applied to take the background into account.
 - Without the correction the result shifts by ~0.5 σ_{stat}
- Background to Ke3
 - Negligible

Dalits Plot PiPi0Pi0 background

Dominant K \pm BR in the V_{US} fit

Absolute BR of Ke3 and Kµ3 from PDGlive

Ke3(PDG) = (5.07 ± 0.04) % **0.8%** error Kµ3(PDG) = (3.353 ± 0.034) % **1.0%** error

Ratio of Ke3 and Kµ3 in NA48/2 2003 data

$$\begin{split} \mathcal{R}_{Ke3/K2\pi} &= 0.2470 \pm 0.0009 \,(\text{stat}) \pm 0.0004 \,(\text{syst}) \\ \mathcal{R}_{K\mu3/K2\pi} &= 0.1637 \pm 0.0006 \,(\text{stat}) \pm 0.0003 \,(\text{syst}) \\ \mathcal{R}_{K\mu3/Ke3} &= 0.663 \pm 0.003 \,(\text{stat}) \pm 0.001 \,(\text{syst}) \end{split}$$

BR(Ke3)/BR(K2 π)=0.4% error dominated by statistic with 87x10³ Ke3 BR(K μ 3)/BR(K2 π)=0.4% error dominated by statistic with 77x10³ K μ 3