Parameters of Charmonium States from KEDR

Evgenii Baldin

KEDR/VEPP-4M

Budker Institute of Nuclear Physics SB RAS Novosibirsk State University Novosibirsk

VEPP-4M/KEDR

- (2) J/ψ , $\psi(2S)$ mass measurement
- (3) $J/\psi \ e^+e^-/\mu^+\mu^-$ widths comparison

$$\Phi$$
 Study of $\psi(2S) o \mu^+ \mu^-$ decay with KEDR detector

- Measurement of main parameters of the $\psi(3770)$ 5
- $(\mathbf{J} / \psi \to \gamma \eta_c)$

(

VEPP-4M collider

• Beam energy $1 \div 6 \, \text{GeV}$

 $\bullet~$ Number of bunches 2×2

For
$$E = 1.5 \, \text{GeV}$$

- Beam current 1.5 mA
- Luminosity $10^{30} \frac{1}{\text{cm}^2 \cdot \text{c}}$

Beam energy measurement:

- Resonant depolarization technique: Instant measurement accuracy ~ 1 × 10⁻⁶ Energy interpolation accuracy (5 ÷ 15) × 10⁻⁶ (10 ÷ 30 keV)
 Infra-red light Compton backscattering:
 - Statistical accuracy $\simeq 5 \times 10^{-5}$ / 30 minutes
 - Systematic uncertainty $\simeq 3 \times 10^{-5}~(50 \div 70~\text{keV})$

KEDR

- Vacuum chamber
- ② Vertex detector
- Orift chamber
- Threshold aerogel counters
- ToF counters
- Liquid krypton calorimeter
- Superconducting coil
- Magnet yoke
- Muon tubes
- Csl-calorimeter
- Openation Solenoid
- VEPP-4M quadrupole

Narrow resonance mass definition

Resonance cross section in soft photon approximation:

$$\sigma(W) = \frac{12\pi}{W^2} (1 + \delta_{\rm rc}) \left[\frac{\Gamma_{ee} \tilde{\Gamma}_h}{\Gamma M} {\rm Im} \, \mathcal{F}(W) - \frac{2\alpha \sqrt{R\Gamma_{ee}} \tilde{\Gamma}_h}{3W} \lambda \, {\rm Re} \, \frac{\mathcal{F}^*(W)}{1 - \Pi_0} \right],$$

where $\mathcal{F} = \frac{\pi \beta}{\sin \pi \beta} \left(\frac{\frac{M}{2}}{-W + M - \frac{i\Gamma}{2}} \right)^{1 - \beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_e} - \frac{1}{2} \right)$

 $\sigma(W)$ must be convoluted with energy distribution:

$$G(W, W') = \frac{g(W - W')}{\sqrt{2\pi}\sigma_W} \exp\left(-\frac{(W - W')^2}{2\sigma_W^2}\right),$$

where $g(\Delta) = \frac{1 + a\Delta + b\Delta^2}{1 + b\sigma_W^2}.$

$$\lambda = \sqrt{\frac{R\Gamma_{\mu\mu}}{\Gamma_h}}$$

Narrow resonance mass definition

Resonance cross section in soft photon approximation:

$$\sigma(W) = \frac{12\pi}{W^2} (1 + \delta_{\rm rc}) \left[\frac{\Gamma_{ee} \tilde{\Gamma}_h}{\Gamma M} {\rm Im} \, \mathcal{F}(W) - \frac{2\alpha \sqrt{R\Gamma_{ee}} \tilde{\Gamma}_h}{3W} \lambda \, {\rm Re} \, \frac{\mathcal{F}^*(W)}{1 - \Pi_0} \right],$$

where $\mathcal{F} = \frac{\pi \beta}{\sin \pi \beta} \left(\frac{\frac{M}{2}}{-W + M - \frac{i\Gamma}{2}} \right)^{1 - \beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_e} - \frac{1}{2} \right)$

 $\sigma(W)$ must be convoluted with energy distribution:

$$G(W, W') = \frac{g(W - W')}{\sqrt{2\pi}\sigma_W} \exp\left(-\frac{(W - W')^2}{2\sigma_W^2}\right),$$

where $g(\Delta) = \frac{1 + a\Delta + b\Delta^2}{1 + b\sigma_W^2}.$

$$\lambda = \sqrt{\frac{R\Gamma_{\mu\mu}}{\Gamma_h}} + \frac{1}{\Gamma_h} \sum_m \sqrt{b_m \Gamma_m^{(s)}} \left\langle \cos \phi_m \right\rangle_{\theta}.$$

$$\begin{split} M_{J/\psi}^{2002-2013} &= 3096.900 \pm 0.002 \pm 0.006 \, \text{MeV} \,\, (\text{6 scans}), \\ \lambda &= 0.45 \pm 0.07 \pm 0.04, \,\, \lambda_{\text{expected}} = \sqrt{R\Gamma_{\mu\mu}/\Gamma_h} = 0.38 \end{split}$$

$$\begin{split} M_{J/\psi}^{2002-2013} &= 3096.900 \pm 0.002 \pm 0.006 \, \text{MeV} \,\, (\text{6 scans}), \\ \lambda &= 0.45 \pm 0.07 \pm 0.04, \,\, \lambda_{\text{expected}} = \sqrt{R\Gamma_{\mu\mu}/\Gamma_h} = 0.38 \end{split}$$

Uncertainty source	2002	2005	2008	common
Energy spread variation	3.0	1.8	1.8	1.8
Energy assignment to DAQ runs	3.7	3.5	3.5	2.5
Energy calibration accuracy	1.6	1.9	1.9	1.6
Beam separation in parasitic I.P.s	0.9	1.7	1.7	0.9
Beam misalignment in the I.P.	1.8	1.5	1.5	1.5
e^+ -, e^- -energy difference	1.2	1.3	1.2	1.2
Symmetric dL/dE shape distortion	1.5	1.3	2.1	1.3
Asymmetric dL/dE shape distortion	2.1	1.9	1.9	1.9
Beam potential	2.0	2.0	2.0	2.0
Detection efficiency instability	2.3	1.7	1.8	0.0
Luminosity measurements	2.2	1.7	1.7	1.1
Residual machine background	1.0	0.7	0.7	0.0
Interference in the hadronic channel	2.7	2.7	2.7	2.6
Sum in quadrature	7.7	7.0	7.2	5.8

$\psi(2S)$ mass measurement

$$\begin{split} & M_{\psi(2S)}^{2002-2013} = 3686.100 \pm 0.004 \pm 0.009 \quad \text{MeV} \ (\text{6 scans}), \\ & \lambda = 0.17 \pm 0.05 \pm 0.05, \ \lambda_{\text{expected}} = \sqrt{R\Gamma_{\mu\mu}/\Gamma_h} = 0.13 \end{split}$$

$\psi(2S)$ mass measurement

$$\begin{split} & M_{\psi(2S)}^{2002-2013} = 3686.100 \pm 0.004 \pm 0.009 \quad \text{MeV} \ (\text{6 scans}), \\ & \lambda = 0.17 \pm 0.05 \pm 0.05, \ \lambda_{\text{expected}} = \sqrt{R\Gamma_{\mu\mu}/\Gamma_h} = 0.13 \end{split}$$

Uncertainty source	2002	2004	2006	2008	common
Energy spread variation	2.0	1.5	1.5	1.5	1.5
Energy assignment to DAQ runs	3.9	3.9	3.8	2.4	1.5
Energy calibration accuracy	1.9	2.3	2.3	2.3	1.9
Beam separation in parasitic IPs	0.5	1.2	1.7	1.7	0.5
Beam misalignment in the IP	5.1	3.3	3.3	3.3	2.5
e^+ -, e^- -energy difference	1.6	2.1	2.1	1.6	1.6
Symmetric $\frac{dL}{dF}$ shape distortion	1.8	1.6	1.6	1.6	1.6
Asymmetric $\frac{dL}{dE}$ shape distortion	2.1	1.9	1.9	1.9	1.9
Beam potential	2.0	2.2	2.2	2.2	2.0
Detection efficiency instability	2.1	1.6	1.6	1.6	0.0
Luminosity measurements	3.0	2.1	2.1	1.5	1.2
Residual machine background	1.0	0.9	0.9	0.9	0.0
Interference in the hadr. chan.	4.1	4.1	4.1	4.1	4.1
Sum in quadrature	9.7	8.7	8.6	8.4	7.0

$J/\psi ightarrow e^+e^-$ (resonance) counting

$J/\psi ightarrow \mu^+\mu^-$ counting

Systematic uncertainty $\Gamma_{ee}/\Gamma_{\mu\mu}(J/\psi)$ (1)

Source	Err, %	Source	Err, %
Interference		Trigger	
Relative luminosity	0.01	1st level	0.20
Energy measurement	0.02	2nd level	0.11
Radiation corrections	0.10	Event selection	
Background		tracking system	0.10
$J/\psi ightarrow$ hadrons	0.10	calorimeter	0.10
Cosmic	0.07	muon system	0.04
Simulation		heta angle cuts	0.10
Bhabha	0.11	heta angle determination	0.14
PHOTOS	0.02	Selection asymmetry	0.14
		ToF inefficiency	0.26
to be continued 🗡	1	Total	0.48

$J/\psi~e^+e^-/\mu^+\mu^-$ widths comparison

 $\Gamma_{e^+e^-}(J/\psi)/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0044 \pm 0.0048 \ (0.65\%)$

Study of $\psi(2S) ightarrow \mu^+ \mu^-$ decay with KEDR detector

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = (19.4 \pm 0.4 \pm 1.1) \, \text{eV.}$ (preliminary)

No direct measurement of $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma$ is listed in the PDG tables. For comparison the product of the two world average values Γ_{ee} and $\mathcal{B}_{\mu\mu}$ is

Evgenii Baldin

shown.

Conditions of analysis near of $\psi(3770)$ region

- Data analysis takes into account interference between the resonant and nonresonant $D\overline{D}$ production.
- The nonresonant form factor can be obtained with an application of the Vector Dominance Model (VDM) to charm production. In this work we employ VDM in a simplified form:

$$F_{D\overline{D}}^{nonresonant}(W) = F_{D\overline{D}}^{\psi(2S)}(W) + F_0$$

where $F_{D\overline{D}}^{\psi(25)}(W)$ is the main part of the form factor corresponding to the $\psi(2S)$ and F_0 is a real constant representing the contributions of the $\psi(4040)$ and higher ψ 's.

• To evaluate the model dependence of the $\psi(3770)$ parameters we tried a few nonresonant form factor parameterizations, which do not assume VDM.

Measurement of $\psi(3770)$ parameters

$$M = 3779.2 \stackrel{+1.8}{_{-1.7}} \stackrel{+0.5}{_{-0.7}} \stackrel{+0.3}{_{-0.3}} \text{MeV}$$
$$\Gamma = 24.9 \stackrel{+4.6}{_{-4.0}} \stackrel{+0.5}{_{-0.6}} \stackrel{+0.2}{_{-0.9}} \text{MeV}$$

Ambiguity of $\psi(3770)$ resonance parameters

 $\delta \sigma^{RC}$, nb

Excess of the multihadron cross section in the $\psi(3770)$ region. Solid and short-dashed curves correspond to two VDM solutions. Resonant and non-resonant parts are presented separately.

(1) $\Gamma_{ee} = 154 \substack{+79 \\ -58 \ -9} \substack{+17 \\ -25} eV, \phi = (171 \pm 17)^{\circ},$ (2) $\Gamma_{ee} = 414 \substack{+72 \\ -80 \ -26 \ -10} eV, \phi = (240 \pm 9)^{\circ}.$

Details in Phys. Lett. B 711 (2012), 292-300

Poster session: An attempt of a joint analysis of BABAR, BELLE, BES, CLEO and KEDR data for determination of $\psi(\rm 3770)$ parameters.

$J/\psi ightarrow \gamma \eta_c$ measurement

- η_c mass, width and $\mathcal{B}(J/\psi \rightarrow \gamma \eta_c)$ have been measured in the inclusive photon spectrum of multihadron J/ψ decays
- M1 transition between 1S states of charmonium \rightarrow rate can be easily calculated in potential models in the limit of a zero width of the resonance. In this decay $\Gamma(\eta_c)/\omega_0 \sim$ $30 MeV/114 \text{ MeV} \Rightarrow$ photon line shape deviates from Breit-Wigner
- ω^3 factor near the η_c resonance and interference with $J/\psi \rightarrow \gamma gg$ and FSR process were taken into account

arXiv:1309.xxxx

Results on $\mathcal{B}(J/\psi \to \gamma \eta_c)$

- Photon line shape in the radiative $J/\psi \rightarrow \gamma \eta_c$ decay was taken in the form $d\Gamma/d\omega \sim \omega^3 f(\omega)BW(\omega)$, where correction factor $f(\omega) = 1$ near the η_c resonance and falls quickly far from resonance
- Our result on $\mathcal{B}(J/\psi \to \gamma \eta_c)$ is higher than the old Crystal Ball and CLEO results and is consistent with the new Lattice QCD theoretical predictions.

direct experiment, theory, indirect experiment

$$\mathcal{B}(J/\psi
ightarrow \gamma \eta_{c}) = (3.58 \pm 0.38 \pm 0.20)\%$$

Summary

•
$$M_{J/\psi}^{\text{final}} = 3096.900 \pm 0.002 \pm 0.006$$
 MeV,

•
$$M_{\psi(2S)}^{ ext{final}} = 3686.100 \pm 0.004 \pm 0.009 \, ext{MeV}$$
,

- $\Gamma_{e^+e^-}(J/\psi)/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0044 \pm 0.0048 \ (0.65\%)$
- $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = (19.4 \pm 0.4 \pm 1.1) \, \text{eV}$ for $\psi(2S)$ (preliminary)

• $\psi(3770)$ parameters

$$M = 3779.2^{+1.8}_{-1.7} {}^{+0.5}_{-0.7} {}^{+0.3}_{-0.3} \text{ MeV}$$

$$\Gamma = 24.9^{+4.6}_{-4.0} {}^{+0.5}_{-0.6} {}^{+0.2}_{-0.9} \text{ MeV}$$

$$\Gamma^{(1)}_{ee} = 154 {}^{+79}_{-58} {}^{+17}_{-9} {}^{+13}_{-25} \text{ eV}$$

$$\Gamma^{(2)}_{ee} = 414 {}^{+72}_{-80} {}^{+24}_{-10} \text{ eV}$$

$$\sigma \mathcal{B}(J/\psi \to \gamma \eta_c) = (3.58 \pm 0.38 \pm 0.20)\%$$

Summary

- $M_{I/\psi}^{\text{tinal}} = 3096.900 \pm 0.002 \pm 0.006 \text{ MeV},$ 3096.916 ± 0.011 MeV (PDG fit) • $M_{\psi(2S)}^{\text{final}} = 3686.100 \pm 0.004 \pm 0.009 \, \text{MeV},$ • 3686.109^{+0.012} MeV (PDG fit) • $\Gamma_{e^+e^-}(J/\psi)/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0044 \pm 0.0048 \ (0.65\%)$ • 0.998 ± 0.012 (PDG fit) • $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma = (19.4 \pm 0.4 \pm 1.1) \text{ eV for } \psi(2S)$ • $(18.2 \pm 2.2) \text{ eV}$ (PDG fit \times PDG fit) • $\psi(3770)$ parameters $M = 3779.2^{+1.8}_{-1.7} + 0.5_{-0.7} + 0.3_{-0.3} \text{ MeV}$ $\Gamma = 24.9^{+4.6}_{-4.0} + 0.5_{-0.6}^{+0.2}_{-0.6}$ MeV $\Gamma_{ee}^{(1)} = 154 \stackrel{+79}{_{-58}} \stackrel{+17}{_{-9}} \stackrel{+13}{_{-25}} \text{ eV}$ $\Gamma_{ee}^{(2)} = 414^{+72}_{-26}^{+24}_{-26}^{+90}_{-10} \text{ eV}$ • $\mathcal{B}(J/\psi \to \gamma \eta_c) = (3.58 \pm 0.38 \pm 0.20)\%$
 - $(1.7\pm0.4)\%$ (PDG average, scale factor 1.6)

Summary

- $M_{I/\psi}^{\text{tinal}} = 3096.900 \pm 0.002 \pm 0.006 \text{ MeV},$ • 3096.916 ± 0.011 MeV (PDG fit) • $M_{\psi(2S)}^{\text{final}} = 3686.100 \pm 0.004 \pm 0.009 \, \text{MeV},$ • 3686.109^{+0.012} MeV (PDG fit) • $\Gamma_{e^+e^-}(J/\psi)/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0044 \pm 0.0048 \ (0.65\%)$ • 0.998 ± 0.012 (PDG fit) $1.0017 \pm 0.0017 \pm 0.0033$ (BESIII 2013) • $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = (19.4 \pm 0.4 \pm 1.1) \text{ eV for } \psi(2S)$ • $(18.2 \pm 2.2) \text{ eV}$ (PDG fit \times PDG fit) • $\psi(3770)$ parameters pprox all published data fit $M = 3779.2^{+1.8}_{-1.7} + \overset{+0.5}{_{-0.7}} + \overset{+0.3}{_{-0.3}} \text{ MeV}$ $M = 3779.2 \pm 1.0 \,\mathrm{MeV}$ $\Gamma = 24.9^{+4.6}_{-4.0} \, {}^{+0.5}_{-0.6} \, {}^{+0.2}_{-0.9} \, \text{MeV}$ $\Gamma = 26.4 \pm 1.0 \text{ MeV}$ $\Gamma_{ee}^{(1)} = 202 \pm 18 \text{ eV}$ $\Gamma_{ee}^{(1)} = 154 \stackrel{+79}{_{-58}} \stackrel{+17}{_{-9}} \stackrel{+13}{_{-25}} \text{ eV}$ $\Gamma^{(2)}_{22} = 346 \pm 19 \text{ eV}$ $\Gamma_{ee}^{(2)} = 414^{+72}_{-26}^{+24}_{-26}^{+90}_{-10} \text{ eV}$
- $\mathcal{B}(J/\psi \to \gamma \eta_c) = (3.58 \pm 0.38 \pm 0.20)\%$ • $(1.7 \pm 0.4)\%$ (PDG average, scale factor 1.6)

The formulae used in this analysis are based on the analytical expression of radiative correction integral in the soft photon approximation (SPA) first obtained in Y. I. Azimov *et al.*, JETP Lett. **21** (1975) 172.

The accuracy improved using E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. **41** (1985) 466. as described in V. V. Anashin *et al.*, Phys. Lett. B **711** (2012) 280

In the SPA the formulae are equivalent to that of R. N. Cahn Phys. Rev. D 36 (1987) 2666 corrections beyond SPA are not essential for this analysis.

Cross section

Cross section (J/ψ)

$$\left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee} = \frac{1}{M^2} \left(1 + \delta_{\rm rc}\right) \left\{\frac{9}{4} \frac{\Gamma_{e^+e^-}^2}{\Gamma M} \left(1 + \cos^2\theta\right) \,{\rm Im}\,\mathcal{F} - \frac{3\alpha}{2} \frac{\Gamma_{e^+e^-}}{M} \left[\left(1 + \cos^2\theta\right) - \frac{(1 + \cos\theta)^2}{(1 - \cos\theta)}\right] \,{\rm Re}\,\mathcal{F}\right\} + \left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee}_{\rm QED}$$

$$\left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu} = \frac{1}{M^2} \left(1 + \delta_{\rm rc}\right) \left\{\frac{9}{4} \frac{\Gamma_{e^+e^-} \Gamma_{\mu^+\mu^-}}{\Gamma M} {\rm Im} \,\mathcal{F} - \frac{3\alpha}{2} \frac{\sqrt{\Gamma_{e^+e^-} \Gamma_{\mu^+\mu^-}}}{M} {\rm Re} \,\mathcal{F}\right\} \left(1 + \cos^2\theta\right) + \left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu}_{\rm QED}$$

where
$$\mathcal{F} = \left(\frac{\frac{M}{2}}{-W + M - \frac{i\Gamma}{2}}\right)^{1-\beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_e} - \frac{1}{2}\right) \simeq 0.077$$

Corrections to the vacuum polarization are omitted in the interference terms.

$$\delta_{\rm rc} = 1 + \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2}\right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72}\right),$$

where $L = \ln(W^2/m_e^2)$.
[Kuraev and Fadin, Sov. J. Nucl. Phys. 41, 466–472, 1985]

 $J/\psi
ightarrow e^+e^-$ (resonance) counting (misc)

$$\begin{split} \langle F(E) \rangle &= \frac{\sum L_i^{1\gamma} \operatorname{Re} \mathcal{F}(E_i)}{\sum L_j^{1\gamma} \operatorname{Im} \mathcal{F}(E_j)} \times \left(1 - \frac{\int \frac{(1 + \cos \theta)^2}{(1 - \cos \theta)} \, d(\cos \theta)}{\int 1 + \cos^2 \theta \, d(\cos \theta)} \right), \\ \langle b(E) \rangle &= \frac{\sum L_i^{1\gamma} \operatorname{Im} \mathcal{F}(E_i)}{\sum L_j^{1\gamma}}, \end{split}$$

where $L_{1\gamma}$ — integrated luminosity by single bremsstrahlung.

Results on η_c mass and width

$$\begin{split} \mathcal{M}(\eta_c) &= (2981.4 \pm 1.0 \pm 2.5) \, \text{MeV}, \\ \Gamma(\eta_c) &= (29.5 \pm 3.0 \pm 4.9) \, \text{MeV}. \end{split}$$

Results on $\Gamma(J/\psi \rightarrow \gamma \eta_c)$

$$\Gamma(J/\psi \to \gamma \eta_c) = (2.99 \pm 0.32 \pm 0.21) \, \text{keV}.$$

Our new result on $\Gamma(J/\psi \rightarrow \gamma \eta_c)$ decay is higher than our 2010 year result, because we use another model for η_c resonance description, take into account interference effects and measure photon efficiency with better accuracy. Possible reasons for discrepancy of our result with Crystal Ball and CLEO results are: background subtraction in the Crystal Ball analysis may be incorrect (polynom degree in fit is too high), and the fact that CLEO does not take into account the effects of interference, although it is necessary for exclusive processes.

