Pion form factor and reactions $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$at energies up to $2-3$ GeV in the many-channel approach.

N. N. Achasov ${ }^{1}$ and A. A. Kozhevnikov ${ }^{1}{ }^{1}{ }^{2}$
${ }^{1}$ Laboratory of Theoretical Physics, S. L. Sobolev Institute for Mathematics ${ }^{2}$ National Research Novosibirsk State University

International Workshop on $e^{+} e^{-}$collisions from ϕ to ψ, September 9-12, 2013, Rome, Italy

Outline

(9) Introduction
(2) The resonance mixing
(3) The expressions
(4) Results
(5) Conclusion

Why new expression?

Pion form factor F_{π} is important characteristics of the low energy phenomena in particle physics. There are a number of expressions for this quantity used in the analysis of experimental data. The simplest approximate vector meson dominance (VDM) expression based on the effective $\gamma-\rho$ coupling $\propto \rho_{\mu} \boldsymbol{A}_{\mu}$,

$$
F_{\pi}(s)=\frac{m_{\rho}^{2} g_{\rho \pi \pi} / g_{\rho}}{m_{\rho}^{2}-s-i \sqrt{s} \Gamma_{\rho \pi \pi}(s)}
$$

- does not possess the correct analytical properties to continue to the region $0 \leq s<4 m_{\pi}^{2}$ and further to $s \leq 0$
- it does not take into account the mixing among isovector ρ-like resonances.
- Normalization $F_{\pi}(0)=1$ is satisfied only within 20% because

$$
F_{\pi}(0)=\frac{g_{\rho \pi \pi}}{g_{\rho}}=\left(\frac{9 m_{\rho} \Gamma_{\rho \pi \pi} \Gamma_{\rho e e}}{2 \alpha^{2} q_{\pi}^{3}}\right)^{1 / 2} \approx 1.20
$$

- The expression based on the gauge invariant $\gamma-\rho$ coupling $\propto \rho_{\mu \nu} F_{\mu \nu}$,

$$
F_{\pi}(s)=1+\frac{s g_{\rho \pi \pi} / g_{\rho}}{m_{\rho}^{2}-s-i \sqrt{s} \Gamma_{\rho \pi \pi}(s)}
$$

respects the correct normalization, but does not possesses correct analytical properties and breaks unitarity.

- Formula of Gounaris and Sakurai respects normalization but does not include $\rho(770)-\rho(1450)-\rho(1700)-\cdots$ mixings and vector-pseudoscalar, axial pseudoscalar etc intermediate states.
- Our earlier expression for F_{π} takes into account isovector mixing but normalization condition is satisfied within 20%.

Treatment of the reaction $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$at $\sqrt{s} \leq 1 \mathrm{GeV}$ where only pseudoscalar-pseudoscalar PP loops are essential is published in part: N. N. Achasov and A. A. Kozhevnikov. Phys. Rev. D83, 113005 (2011). The present talk:

- Treatment of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, 2 \pi^{+} 2 \pi^{-}$at $\sqrt{s} \leq 3 \mathrm{GeV}$ (BaBaR) and $e^{+} e^{-} \rightarrow \omega \pi^{0}$ at $\sqrt{s} \leq 2 \mathrm{GeV}$ (SND2013) taking into account pseudoscalar-pseudoscalar PP, vector-pseudoscalar VP, and axial vector-pseudoscalar AP loops.

Narrow width \rightarrow finite width

- Narrow width: $D_{R}^{(0)}=m_{R}^{2}-s$.
- finite width effects:

$$
\begin{aligned}
\frac{1}{D_{R}(s)}= & \frac{1}{D_{R}^{(0)}}+\frac{1}{D_{R}^{(0)}} \Pi_{R R}(s) \frac{1}{D_{R}^{(0)}}+ \\
& \frac{1}{D_{R}^{(0)}} \Pi_{R R}(s) \frac{1}{D_{R}^{(0)}} \Pi_{R R}(s) \frac{1}{D_{R}^{(0)}}+\cdots= \\
& \frac{1}{D_{R}^{(0)}-\Pi_{R R}(s)}, \\
D_{R}(s)= & m_{R}^{2}-s-\operatorname{Re} \Pi_{R R}(s)-i \sum_{f} \sqrt{s} \Gamma_{R \rightarrow f}(s) .
\end{aligned}
$$

Resonance mixing

Two-resonance case as an example:

$$
\begin{aligned}
\frac{1}{D_{R}} \rightarrow & \frac{1}{D_{R}}+\frac{1}{D_{R}} \Pi_{R R^{\prime}} \frac{1}{D_{R^{\prime}}} \Pi_{R R^{\prime}} \frac{1}{D_{R}}+\cdots= \\
& \frac{D_{R^{\prime}}}{D_{R} D_{R^{\prime}}-\Pi_{R R^{\prime}}^{2}} \equiv\left(G^{-1}\right)_{R R}, \\
\frac{1}{D_{R^{\prime}}} \rightarrow & \frac{1}{D_{R^{\prime}}}+\frac{1}{D_{R^{\prime}}} \Pi_{R R^{\prime}} \frac{1}{D_{R}} \Pi_{R R^{\prime}} \frac{1}{D_{R^{\prime}}}+\cdots= \\
& \frac{D_{R}}{D_{R} D_{R^{\prime}}-\Pi_{R R^{\prime}}^{2}} \equiv\left(G^{-1}\right)_{R^{\prime} R^{\prime}} \\
\frac{\Pi_{R R^{\prime}}}{D_{R} D_{R^{\prime}}} \rightarrow & \frac{\Pi_{R R^{\prime}}}{D_{R} D_{R^{\prime}}}+\frac{\left(\Pi_{R R^{\prime}}\right)^{3}}{\left(D_{R} D_{R^{\prime}}\right)^{2}}+\cdots=\frac{\Pi_{R R^{\prime}}}{D_{R} D_{R^{\prime}}-\Pi_{R R^{\prime}}^{2}} \equiv\left(G^{-1}\right)_{R R^{\prime}}
\end{aligned}
$$

Two-resonance case

- The matrix of inverse propagators:

$$
G=\left(\begin{array}{cc}
D_{R} & -\Pi_{R R^{\prime}} \\
-\Pi_{R R^{\prime}} & D_{R}
\end{array}\right)
$$

- The matrix of propagators:

$$
G^{-1}=\frac{1}{D_{R} D_{R^{\prime}}-\Pi_{R R^{\prime}}^{2}}\left(\begin{array}{cc}
D_{R^{\prime}} & \Pi_{R R^{\prime}} \\
\Pi_{R R^{\prime}} & D_{R}
\end{array}\right)
$$

- The amplitude:

$$
A\left(i \rightarrow R+R^{\prime} \rightarrow f\right)=\left(\begin{array}{ll}
g_{i \rightarrow R} & g_{i \rightarrow R^{\prime}}
\end{array}\right) G^{-1}\binom{g_{R \rightarrow f}}{g_{R^{\prime} \rightarrow f}}
$$

Generalization to arbitrary number of mixed resonances

Generalization to three (and any number of) resonance mixing:

$$
\begin{aligned}
& G=\left(\begin{array}{cccc}
D_{1} & -\Pi_{12} & -\Pi_{13} & \cdots \\
-\Pi_{12} & D_{2} & -\Pi_{23} & \cdots \\
-\Pi_{13} & -\Pi_{23} & D_{3} & \cdots \\
\cdots & \cdots & \cdots &
\end{array}\right), \\
& G^{-1}=\frac{1}{\Delta}\left(\begin{array}{llll}
g_{11} & g_{12} & g_{13} & \cdots \\
g_{12} & g_{22} & g_{23} & \cdots \\
g_{13} & g_{23} & g_{33} & \cdots \\
\cdots & \cdots & \cdots &
\end{array}\right), \Delta=\operatorname{det} G .
\end{aligned}
$$

Dispersion representation for polarization operators

- Dispersion relation for polarization operators are used under assumption of quasi-two body intermediate hadronic states:

$$
\begin{aligned}
\frac{\Pi_{\rho i} \rho_{i}}{(a b)}(s) & =\frac{1}{\pi} \int_{\left(m_{a}+m_{b}\right)^{2}}^{\infty} \frac{\sqrt{s^{\prime}} \Gamma_{\rho_{i} \rightarrow a b}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)} d s^{\prime}, \\
\operatorname{Im} \Pi_{\rho_{i} \rho_{i}}^{(a b)}(s) & =\sqrt{s} \Gamma_{\rho_{i} \rightarrow a b}(s) .
\end{aligned}
$$

- This form automatically provides the correct normalization of the form factor $F_{\pi}(0)=1$.

Loops contributing to polarization operators

We take into account analytically calculated

- pseudoscalar (PP) $\pi^{+} \pi^{-}$and $K^{+} K^{-}+K^{0} \bar{K}^{0}$ loops:

$$
\Pi_{\rho_{i} \rho_{j}}^{(P P)}=g_{\rho_{i} \pi \pi} g_{\rho_{j} \pi \pi}\left[\Pi^{(P P)}\left(s, m_{\rho_{i}}, m_{\pi}\right)+\frac{1}{2} \Pi^{(P P)}\left(s, m_{\rho_{i}}, m_{K}\right)\right]
$$

- vector-pseudoscalar (VP) $\omega \pi^{0}$ and $K^{*} \bar{K}^{+} \bar{K}^{*} K$ loops:

$$
\begin{aligned}
\Pi_{\rho_{i} \rho_{j}}^{(V P)}= & g_{\rho_{i} \omega \pi} g_{\rho_{j} \omega \pi}\left[\Pi^{(V P)}\left(s, m_{\rho_{i}}, m_{\omega}, m_{\pi}\right)+\right. \\
& \left.\Pi^{(V P)}\left(s, m_{\rho_{i}}, m_{K^{*}}, m_{K}\right)\right]
\end{aligned}
$$

- the axial vector-pseudoscalar (AP) $a_{1}^{ \pm} \pi^{\mp}, K_{1}(1270) \bar{K}+$ c.c. loops:

$$
\begin{aligned}
\Pi_{\rho_{i} \rho_{j}}^{(A P)}= & 2 g_{\rho_{i} a_{1} \pi} g_{\rho_{j} a_{1} \pi}\left[\Pi^{(A P)}\left(s, m_{\rho_{i}}, m_{a_{1}}, m_{\pi}\right)+\right. \\
& \left.\frac{1}{2} \Pi^{(A P)}\left(s, m_{\rho_{i}}, m_{K_{1}(1270)}, m_{K}\right)\right]
\end{aligned}
$$

Relations among coupling constants

- $q \bar{q}$ quark model relations among the coupling constants are assumed for simplicity:

$$
\begin{aligned}
g_{\rho_{i} K K} & =\frac{1}{2} g_{\rho_{i} \pi \pi} \\
g_{\rho_{i} K^{*} K} & =\frac{1}{2} g_{\rho_{i} \omega \pi} \\
g_{\rho_{i} K_{1}(1270) K} & =\frac{1}{2} g_{\rho_{i} a_{1}(1260) \pi}
\end{aligned}
$$

Polarization operators

- Diagonal polarization operators:

$$
\Pi_{\rho_{i} \rho_{i}}=\Pi_{\rho_{i} \rho_{i}}^{(P P)}+\Pi_{\rho_{i} \rho_{i}}^{(V P)}+\Pi_{\rho_{i} \rho_{i}}^{(A P)}
$$

- Pseudoscalar-Pseudoscalar

$$
\Pi_{\rho_{1} \rho_{i}}^{(P P)}=\frac{g_{\rho_{i} \pi \pi}}{g_{\rho_{1} \pi \pi}} \Pi_{\rho_{1} \rho_{1}}^{(P P)}, \Pi_{\rho_{i} \rho_{j}}^{(P P)}=\frac{g_{\rho_{i} \pi \pi} g_{\rho_{j} \pi \pi}}{g_{\rho_{1} \pi \pi}^{2}} \Pi_{\rho_{1} \rho_{1}}^{(P P)}
$$

VP and AP analogously to PP

- Total non-diagonal $(i, j \neq 1)$

$$
\begin{aligned}
\Pi_{\rho_{1} \rho_{i}} & =\Pi_{\rho_{1} \rho_{i}}^{(P P)}+\Pi_{\rho_{1} \rho_{i}}^{(V P)}+\Pi_{\rho_{1} \rho_{i}}^{(A P)}, \\
\Pi_{\rho_{i} \rho_{j}} & =\Pi_{\rho_{i} \rho_{j}}^{(P P)}+\Pi_{\rho_{i} \rho_{j}}^{(V)}+\Pi_{\rho_{i} \rho_{j}}^{(A P)}+s a_{i j}
\end{aligned}
$$

Dispersion representations

- Dispersion representations (remaining logarithmic divergencies cancel after subtracting the real parts at the $\rho(770)$ mass):

$$
\begin{aligned}
\frac{\Pi_{R R}^{(P P)}(s)}{s}= & \frac{g_{R P P}^{2}}{6 \pi^{2}} \int_{\left(2 m_{P}\right)^{2}}^{\infty} \frac{q_{P P}^{3}\left(s^{\prime}\right)}{s^{\prime 3 / 2}\left(s^{\prime}-s-i \varepsilon\right)} d s^{\prime} \\
\frac{\Pi_{R R}^{(V P)}(s)}{s}= & \frac{g_{R V P}^{2}}{12 \pi^{2}} \int_{\left(m_{V}+m_{P}\right)^{2}}^{\infty} \frac{q_{V P}^{3}\left(s^{\prime}\right)}{\sqrt{s^{\prime}}\left(s^{\prime}-s-i \varepsilon\right)} \frac{s_{0}+m_{R}^{2}}{s_{0}+s^{\prime}} d s^{\prime}, \\
\frac{\Pi_{R R}^{(A P)}(s)}{s}= & \frac{g_{R A P}^{2}}{48 \pi^{2}} \int_{\left(m_{A}+m_{P}\right)^{2}}^{\infty} \frac{\left[\left(s^{\prime}+m_{A}^{2}-m_{P}^{2}\right)^{2}+2 s^{\prime} m_{A}^{2}\right]}{\left(s^{\prime}-s-i \varepsilon\right) s^{\prime 3 / 2}} \times \\
& \frac{s_{0}+m_{R}^{2}}{s_{0}+s^{\prime}} q_{A P}\left(s^{\prime}\right) d s^{\prime} .
\end{aligned}
$$

Figure : Energy dependence of $\operatorname{Re} \Pi_{\rho_{1} \rho_{1}}^{(V)}(s)$.

$\operatorname{Re} \Pi_{\rho_{1} \rho_{1}}^{(A P)}$

Figure : Energy dependence of $\operatorname{Re} \Pi_{\rho_{1} \rho_{1}}^{(A P)}(s)$.

The pion form factor

- The expression for the pion form factor:

$$
\begin{aligned}
F_{\pi}(s)= & \left(g_{\gamma \rho_{1}}, g_{\gamma \rho_{2}}, g_{\gamma \rho_{3}}, \cdots\right) G^{-1}\left(\begin{array}{c}
g_{\rho_{1} \pi \pi} \\
g_{\rho_{2} \pi \pi} \\
g_{\rho_{3} \pi \pi} \\
\cdots
\end{array}\right)+ \\
& \frac{g_{\gamma \omega} \Pi_{\rho_{1} \omega}}{D_{\omega} \Delta}\left(g_{11} g_{\rho_{1} \pi \pi}+g_{12} g_{\rho_{2} \pi \pi}+g_{13} g_{\rho_{3} \pi \pi}\right)+\cdots
\end{aligned}
$$

$\rho_{1}-\omega(782)$ mixing is essential because of the mass proximity, $\rho_{2,3}, \ldots \omega$, mixings are negligible.

- Automatically respects the current conservation condition $F_{\pi}(0)=1$ and possesses correct analytical properties over entire s axis

The cross section of $e^{+} e^{-} \rightarrow \omega \pi^{0}$

$$
\begin{aligned}
& \sigma_{e^{+} e^{-} \rightarrow \omega \pi^{0}}=\frac{4 \pi \alpha^{2}}{3 s^{3 / 2}}\left|A_{e^{+} e^{-} \rightarrow \omega \pi}\right|^{2} q_{\omega \pi}^{3}, \\
& A_{e^{+} e^{-} \rightarrow \omega \pi}=\left(g_{\gamma_{1} 1}, g_{\gamma_{\rho_{2}}}, g_{\gamma_{\rho_{3}}}, \cdots\right) G^{-1}\left(\begin{array}{l}
g_{\rho_{1} \omega \pi} \\
g_{\rho_{2}} \\
g_{\rho_{3} \omega \pi} \\
\cdots
\end{array}\right)
\end{aligned}
$$

Model for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

The model: $a_{1}^{ \pm} \pi^{\mp}$ dominance of the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$final state.

- $A\left(\rho_{i q} \rightarrow a_{1 k} \pi_{p}\right)=g_{\rho_{i} a_{1} \pi}\left[\left(\epsilon_{a_{1}} \epsilon_{\rho_{i}}\right)(k q)-\left(\epsilon_{a_{1}} q\right)\left(\epsilon_{\rho_{i}} k\right)\right]$
- $\Gamma_{\rho_{i} \rightarrow 2 \pi^{+}+2 \pi^{-}}(s)=$
$\frac{g_{\rho_{1} a_{1} \pi}^{12 \pi}}{12 \pi} \int_{\left(3 m_{\pi}\right)^{2}}^{\left(\sqrt{s}-m_{\pi}\right)^{2}} \rho_{a_{1}}\left(m^{2}\right)\left[\frac{\left(s+m^{2}-m_{\pi}^{2}\right)^{2}}{2 s}+m^{2}\right] q_{a_{1} \pi} d m^{2}$
- $\rho_{a_{1}}\left(m^{2}\right)=\frac{m_{a_{1}} \Gamma_{a_{1}} / \pi}{\left(m^{2}-m_{a_{1}^{2}}^{2}\right)^{2}+m_{a_{1}}^{2} \Gamma_{a_{1}}^{2}}$

The cross section of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

$$
\begin{aligned}
\sigma_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}= & \frac{(4 \pi \alpha)^{2}}{3 s^{3 / 2}}\left|\left(g_{\gamma \rho_{1}}, g_{\gamma \rho_{2}}, g_{\gamma \rho_{3}}, \cdots\right) G^{-1}\left(\begin{array}{c}
g_{\rho_{1} a_{1} \pi} \\
g_{\rho_{2} a_{1} \pi} \\
g_{\rho_{3} a_{1} \pi} \\
\cdots
\end{array}\right)\right|^{2} \times \\
& W_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}(s) \\
& W_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}(s)=\frac{\Gamma_{\rho_{i}+2 \pi^{+}+2 \pi^{-}}(s)}{g_{\rho ; 1_{1} \pi}^{2}}
\end{aligned}
$$

The quantities to fit

The quantities to fit are

- The bare cross section $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$undressed from vacuum polarization of the photon but the final state radiation of charged pion included via function $a(s)$:
$\sigma_{\text {bare }}=\frac{8 \pi \alpha^{2}}{3 s^{5 / 2}}\left|F_{\pi}(s)\right|^{2} q_{\pi}^{3}(s)\left[1+\frac{\alpha}{\pi} a(s)\right]$ $a(s)$ in the point-like pion approximation.
- The cross section of the reaction $e^{+} e^{-} \rightarrow \omega \pi^{0}$
- The cross section of the reaction $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

What's fitted

Two fitting schemes:

- (Scheme I) The low-energy ($\sqrt{s} \leq 1 \mathrm{GeV}$) SND, CMD2, and KLOE2010 data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$fitted upon neglecting VP,AP intermediate states inessential in this region. Taken into account are $\rho(770)+\rho(1450)+\rho(1700)$.
- (Scheme II) BaBaR data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, 2 \pi^{+} 2 \pi^{-}$at $\sqrt{s} \leq 3 \mathrm{GeV}$ and SND2013 data on $e^{+} e^{-} \rightarrow \omega \pi^{0}$. Taken into account are the PP, VP, AP intermediate states and $\rho(770)+\rho(1450)+\rho(1700)+\rho(2100)$ whose masses, coupling constants are free but subjected to the constrain $\frac{g_{\rho_{1} \pi \pi}}{g_{\rho_{1}}}+\frac{g_{\rho_{2} \pi \pi}}{g_{\rho_{2}}}+\frac{g_{\rho_{3} \pi \pi}}{g_{\rho_{3}}}+\frac{g_{\rho_{4} \pi \pi}}{g_{\rho_{4}}}=1$ necessary for correct normalization $F_{\pi}(0)=1$

Fitting BaBaR on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$in Scheme II

Resonance parameters from fitting BABAR $\pi^{+} \pi^{-}$data

parameter	Scheme I	Scheme II
$m_{\rho_{1}}[\mathrm{MeV}]$	773.92 ± 0.10	766.9 ± 0.2
$g_{\rho_{1} \pi \pi}$	5.785 ± 0.004	6.345 ± 0.003
$g_{\rho_{1}}$	5.167 ± 0.002	4.666 ± 0.002
$m_{\omega}[\mathrm{MeV}]$	782.04 ± 0.10	782.01 ± 0.09
g_{ω}	17.05 ± 0.29	$\equiv 17.06(\mathrm{PDG})$
$10^{3} \Pi_{\rho_{1} \omega}^{\prime}\left[\mathrm{GeV}^{2}\right]$	4.00 ± 0.06	4.41 ± 0.10
$\chi^{2} / N_{\text {d.o.f. }}$	$216 / 260$	$320 / 313$

Renormalization

Renormalization in the single-resonance approximation

- Inverse propagator

$$
D_{\rho_{1}}=m_{\rho_{1}}^{2}-s+\left.\left(m_{\rho_{1}}^{2}-s\right) \frac{d \operatorname{Re} \Pi_{\rho_{1} \rho_{1}}(s)}{d s}\right|_{s=m_{\rho_{1}}^{2}}-i \sqrt{s} \Gamma_{\rho_{1} \pi \pi}(s)
$$

- Physical coupling constants determined from visible peak are expressed via bare ones as $g_{\rho_{1} \pi \pi}^{\text {phys }}=Z_{\rho}^{-1 / 2} g_{\rho_{1} \pi \pi}$, $g_{\rho_{1}}^{\text {phys }}=Z_{\rho}^{1 / 2} g_{\rho_{1}}$, where $Z_{\rho}=1+\left.\frac{d \operatorname{Re} \Pi_{\rho_{1} \rho_{1}}(s)}{d s}\right|_{s=m_{\rho_{1}}^{2}}$
- The contributions of the VP loop to $d \operatorname{Re} \Pi_{\rho_{1} \rho_{1}} / d s$ near $s=m_{\rho_{1}}^{2}$ is positive and exceed the negative contribution from the PP loop. The same is true for the AP loop. As a result, $Z_{\rho}>1$.

Continuation to space-like region in the scheme I

Continuation to the space-like domain using the resonance parameters obtained from fitting Scheme I:

Continuation to space-like region in the scheme II

Continuation to the space-like domain using the resonance parameters obtained from fitting Scheme II:

The Landau pole

- Deeply in the space-like domain: $\Pi_{\rho \rho}^{(\pi \pi)} \sim \frac{g_{\rho \pi \pi}^{2}|s|}{48 \pi^{2}} \ln \frac{|s|}{m_{\rho}^{2}}$
- Inverse propagator $m_{\rho}^{2}+|s|-\Pi_{\rho \rho}^{(\pi \pi)}=0$ has zero at some $\left|S_{L}\right|$ - the Landau pole $\sqrt{\left|S_{L}\right|} \sim m_{\rho} \exp \frac{24 \pi^{2}}{g_{\rho \pi}^{2} \pi}$
- Numerically, for the $\pi^{+} \pi^{-}$loop, with the parameters from different fits, $\sqrt{\left|S_{L}\right|}=80-90 \mathrm{GeV}$.
- VP and AP loops bring the pole to the observable region.
- Stronger suppression factors for VP and AP partial widths are required?

Fitting SND2013 on $e^{+} e^{-} \rightarrow \omega \pi^{0}$ in Scheme II

Fitting BaBaR on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$in Scheme II

- Masses of heavier resonances:

mass	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$	$e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}$	$e^{+} e^{-} \rightarrow \omega \pi^{0}$
$m_{\rho_{2}}[\mathrm{MeV}]$	1307 ± 4	1323 ± 3	1747 ± 4
$m_{\rho_{3}}[\mathrm{MeV}]$	1491 ± 2	1506 ± 1	1880 ± 160
$m_{\rho_{4}}[\mathrm{MeV}]$	2008 ± 8	1875 ± 5	2060 ± 40

- Coupling constants determined from fitting three channels, are not consistent with each other. Perhaps, this is the consequence of the oversimplified model for four-pion production amplitude.
- Possible way out: a different subtraction scheme with three subtractions for the non-diagonal polarization operators, $\operatorname{Re} \Pi_{\rho_{i} \rho_{j}}(0)=\operatorname{Re} \Pi_{\rho_{i} \rho_{j}}\left(m_{\rho_{i}}^{2}\right)=\operatorname{Re} \Pi_{\rho_{i} \rho_{j}}\left(m_{\rho_{j}}^{2}\right)=0$ is now under study

Conclusion

New expression for $F_{\pi}(s)$:

- gives a good description of the data of SND, CMD-2, KLOE, BaBaR on $\pi^{+} \pi^{-}$production in $e^{+} e^{-}$at $\sqrt{s}<1 \mathrm{GeV}$
- describes the BaBaR data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$in a wider energy range $\sqrt{s} \leq 3 \mathrm{GeV}$ upon introducing necessary coupling constants characterizing other two channels VP,AP observed in $e^{+} e^{-} \rightarrow \omega \pi^{0}$ and $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
- does not contradict the measured δ_{1}^{1}
- does not require the commonly accepted Blatt - Weisskopf centrifugal factor $\left(1+R_{\pi}^{2} k_{R}^{2}\right) /\left(1+R_{\pi}^{2} k^{2}\right)$

Conclusion

- Loops of PP, VP, AP intermediate states and the contributions of higher energy resonances $\rho(1450)$, $\rho(1700), \rho(2100)$ affect the values of $m_{\rho(770)}, g_{\rho_{1} \pi \pi}, g_{\rho_{1}}$ extracted from the data
- Resonance contributions restricted to the PP loops reproduce the spacelike pion form factor up to $-10 \mathrm{GeV}^{2}$. Adding VP, AP intermediate states spoils form factor due to the Landau zeros. Some work is required to push the Landau zeros to higher spacelike momenta.

Thank You!

