Light meson studies with WASA-at-COSY

Lena Heijkenskjöld for the WASA-at-COSY collaboration

Uppsala University

Presentation outline

The WASA-at-COSY collaboration

- Who and where
- Our contribution to light meson decay studies

• The experimental set-up

- The production and detection methods

Current analyses

- Mention all ongoing analyses
- Present selected channels in detail

Study of the decays of the light mesons π^0 , η and ω ideal for investigations of physics in the medium energy range

- Precision tests and experimental input to ChPT
- Form factor measurements
- Test symmetries and their breaking
- Search for physics beyond the Standard Model

The WASA	program
----------	---------

Current analyses

Experimental set-up

Meson production

Beam: High intensity proton or deuteron beam

- $p + p \rightarrow p + p + X$
- Large cross sections
- Selective triggers required
- \rightarrow High statistics studies on rare decays

Meson detection

Target: Frozen pellets of hydrogen or deuterium

- $p + d \rightarrow {}^{3}He + X$
- Lower cross sections
- Unbiased triggers can be used
- \rightarrow Precision studies on common decays

The WASA	program
----------	---------

Current analyses

Experimental set-up

Meson production

Beam: High intensity proton or deuteron beam

- $p + p \rightarrow p + p + X$
- Large cross sections
- Selective triggers required
- \rightarrow High statistics studies on rare decays

Meson detection

Target: Frozen pellets of hydrogen or deuterium

- $p + d \rightarrow {}^{3}He + X$
- Lower cross sections
- Unbiased triggers can be used
- \rightarrow Precision studies on common decays

Clean tagging of recoil particles

The WASA	program
----------	---------

Current analyses

Experimental set-up

Meson production

Beam: High intensity proton or deuteron beam

- $p + p \rightarrow p + p + X$
- Large cross sections
- Selective triggers required
- \rightarrow High statistics studies on rare decays

Meson detection

Target: Frozen pellets of hydrogen or deuterium

- $p + d \rightarrow {}^{3}He + X$
- Lower cross sections
- Unbiased triggers can be used
- \rightarrow Precision studies on common decays

\sim 4 π coverage of decay particles

The WASA program	Experimental set-up	Current analyses	Summary
		000000	
π^0			

Decay	Branching ratio	Interesting physics
$\pi^0 ightarrow e^+ e^- \gamma$	$(1.174\pm0.035) imes10^{-2}$	
$\pi^0 ightarrow e^+ e^-$	$(6.46\pm0.33) imes10^{-8}$	Physics beyond SIVI

 π^0 produced in p - p, $\mathsf{P}_{\mathsf{beam}}$ 1.155 $\mathsf{GeV/c}$

[1] Astron.Astrophys.407 (2003) L55, [2] Nature458 (2009) 607, [3] arXiv:1304.0671v2, [4] PRL68 (1992) 3845, [5] PLB720 (2013) 111, [6] PRD86 (2012)

The WASA program	Experimental set-up	Current analyses	Summary
		000000	
~			

η

All decay modes are supressed \longrightarrow access to rare decays

Decay	Branching ratio	Interesting physics
$\eta \to \pi^+\pi^-\pi^0$	$(22.74 \pm 0.28) \times 10^{-2}$	ChPT test: Dalitz plot parameters
$\eta \to \pi^+\pi^-\gamma$	$(4.60\pm 0.16)\times 10^{-2}$	ChPT test: Box anomaly & BR
$\eta \to {\rm e}^+ {\rm e}^- \gamma$	$(7.0 \pm 0.7) imes 10^{-3}$	Transition form factor & BR
$\eta \to \pi^+\pi^- {\rm e}^+ {\rm e}^-$	$(2.68 \pm 0.11) imes 10^{-4}$	CP test of SM & BR
$\eta ightarrow { m e^+e^-e^+e^-}$	$(2.4\pm0.2)\times10^{-5}$	Double transition form factor & BR
$\eta ightarrow \pi^0 e^+ e^-$	$< 4 imes 10^{-5}$	C test of SM & BR
$\eta ightarrow e^+e^-$	$< 5.6 imes 10^{-6}$	Physics beyond SM

 $\frac{p - d \text{ production}}{3 \times 10^7 \ \eta \text{ tagged}}$ $P_{\text{beam}} \ 1.7 \text{ GeV/c}$

 ${p - p \ {
m production} \over \sim 5 imes 10^8 \ \eta \ {
m produced}}$

 $\mathsf{P}_{\mathsf{beam}} \ 2.14 \ \mathsf{GeV}/\mathsf{c}$

The V	VASA program		mental set-up		Current analyses	
η -	$ ightarrow \pi^+\pi^-\pi^0$					
	Goal: benchma	arking ChPT				
	• Large branching ratio - ideal for tests of ChPT $X = \frac{\sqrt{3}(T_+ - T)}{T_+ + T + T_0}$ $Y = \frac{3T_0}{T_+ + T + T_0} - 1$					$Y = \frac{3T_0}{T_+ + T + T_0} - 1$
	 Produce high 	gh statistics D	Dalitz plot	$\frac{d\Gamma}{dXdY} \propto A(\lambda$	$(Y) ^2 \propto 1 + aY + b$	$bY^2 + cX + dX^2 + eXY + fY^3 \dots$
	~ × 10 ⁴					
	25	EXP MC ³ He x ¹ y	. Ong	oing WASA	analysis	
	2		* <u>,</u> •	p - d		
	15 9		•	Clear $\eta \to \pi$	$^+\pi^-\pi^0$ signa	I
• 1.33×10^5 signal events in Dalitz plot				n Dalitz plot		
include second data set $\sim \times 2$ statistic			×2 statistic			
	Preliminary para	M ^{rt} He)(MeV)	™ tent with m	neasurement f	from KLOF	
	Experiment	-a	b	d	f	
	KLOE [7]	1.090(5)(+8)	0.124(6)(10)	0.057(6)(+7)	0.14(1)(2)	
	WASA [PREL.]	1.074(23)(3)	0.179(27)(8)	0.059(25)(10)	0.089(58)(110)	ATATA
	ChPT NNLO [8]	1.271(75)	0.394(102)	0.055(57)	0.025(160)	
[7]	c and e are consisten Ongoing analysi	t with zero - charg	ge symmetry ${\sf a} o 10^6 \; {\sf ev}$	vents	4	
[/] JF	IEF 0005:000,2008, [8] JHEF	0/11:030,2007				

	ne WASA program		Current analyses	
η	$\eta ightarrow \pi^+\pi^-$	γ		
	Goal: study• Occurs t• $\Gamma(\eta \rightarrow \tau)$ • High pre- and Dal	decay dynamics through chiral anomaly of QCD $\pi^+\pi^-\gamma)_{box} < \Gamma(\eta \to \pi^+\pi^-\gamma)_{exp}$ ecision experimental values of BR itz distributions needed	Triangle anomaly $\eta \longrightarrow \eta^{p} \pi$ $\eta = \eta$	Box anomaly π π π
	$\begin{tabular}{ c c c c } \hline \hline WASA: public \\ \hline \bullet p - d \\ \hline \bullet 1.4 \times 10 \\ i) \cos(\theta_{\tau} \\ ii) E_{\gamma} \end{tabular}$	$\begin{array}{l} \begin{array}{l} \text{ication PLB707 (2012)} \\ \end{array} \\ \begin{array}{l} ^{4} \text{ signal events to measure} \\ _{\pi}) \rightarrow \text{ consistent with P wave} \\ \rightarrow \text{ parametrised by } 1 + \alpha s_{\pi\pi} \end{array}$	['nre] 'Jp / Jp 9 8 7 6 5 4	
	$\alpha_{fit} = 1.89$ Ongoing WA • p - d: • p - p:	$\pm 0.25_{stat} \pm 0.59_{sys} \pm 0.02_{theo}$ GeV SA analysis BR _{exp} measurement Re-measurement of decay dynam	$\begin{array}{c c} & & & & \\ \hline & & & \\ &$	$\frac{0.15}{ F_V(s_{\pi\pi}) ^2}$

The WASA program	Experimental set-up	Current analyses Summary
ω		
Decay	Branching ratio	Interesting physics
$\omega \to \pi^+\pi^-\pi^0$	$(89.2\pm0.7) imes10^{-2}$	Dalitz plot parameters
$\omega o \pi^0 \gamma$	$(8.28\pm 0.28)\times 10^{-2}$	Branching ratio
$\omega \to \pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\times 10^{-2}$	$ ho-\omega$ mixing
$\omega ightarrow \pi^0 e^+ e^-$	$(7.7\pm 0.6) imes 10^{-4}$	Transition form factor
	Collected data sets	
p+ d, \sim 2 wee P_{beam} 2.25 & 2.19	ks, GeV/c P	p +p, pilot run, _{beam} 2.851 & 3.350GeV/c
p + d	A glance at $\omega \to \pi^+\pi^-\tau$	$\frac{p}{p+p} = \frac{p+p}{p+r}$
Cut based selection: 72 00	0 signal events With ki	nematical fit: 5600 signal events (1/3 of collected data)

The WASA	program
----------	---------

Current analyses

Summary

... is an ideal facility for light meson investigations.

Mesons π^0 , η and ω produced in p-p and p-d reactions.

WASA-at-COSY...

...contributes significantly to

- tests on ChPT (decay dynamics variables, QCD anomalies ...).
- form factor measurements.
- tests of Standard Model and searches for new physics.

...will soon

- ${\, {\rm \bullet}\,}$ release BR measurements on several η decays.
- finalise Dalitz plot parameters for $\eta \to \pi^+ \pi^- \pi^0$.

The WASA program	Current analyses	Summary
Back up		

BACK UP SLIDES

	VALAC A	
I he	WASA	program

Current analyses

Back up - η

 $\eta
ightarrow \pi^+\pi^-\mathrm{e^+e^-}$

- Driven by same QCD anomalies as $\eta \to \pi^+\pi^-\gamma.$
- The $\pi\pi\gamma$ vertex could contain new source of CP violation. \rightarrow an asymmetry in the angle between $e^{+/-}$ and $\pi^{+/-}$ decay planes.

 Preliminary results:
 BR = $(3.10 \pm 0.27_{stat} \pm 0.22_{sys}) \times 10^{-4}$

 (263±24 signal events)
 $A_{\Phi} = (0.4 \pm 9.0_{stat} \pm 2.8_{sys}) \times 10^{-2}$

 $A_{\Phi} = \frac{Count(\sin \Phi \cos \Phi > 0) - Count(\sin \Phi \cos \Phi < 0)}{Count(\sin \Phi \cos \Phi > 0) + Count(\sin \Phi \cos \Phi < 0)}$

 $\eta
ightarrow {
m e^+e^-e^+e^-}$

- \bullet Allows measurement of the η double form factor.
- Current analysis on p d data with goal of BR measurement.

Preliminary results: $BR = (3.0 \pm 0.8_{stat} \pm 0.7_{sys}) \times 10^{-5}$

Future analysis of p -p data, higher statistics

 \longrightarrow possibly sensitive to form factor measurement.

^(50±13) signal events)