Overview prospects at BINP

I.A.Koop, for VEPP-2000, VEPP-4M and VEPP-5 teams BINP, 630090 Novosibirsk, Russia

> Phi Psi 13, Rome September 9-12, 2013

Outline

- VEPP-2000 results and plans
- BEP-booster ring upgrade to 1 GeV
- Positrons from new injector complex
- VEPP-4M
- Super tau/charm factory status
- Other proposals

Cross section $e^+e^- \rightarrow hadrons$

VEPP-2000 collider facility

main parameters at 10ev	Main	parameters	at 1GeV
-------------------------	------	------------	---------

Circumference	24.388 m	Beam energy	160 ÷ 1000 MeV
Number of bunches	1	Number of particles	1×10 ¹¹
Tunes	4.1 / 2.1	Beta-function @ IP	8.5 cm 4
Beam-beam parameter ξ	0.1	Luminosity	1×10 ³² cm ⁻² s ⁻¹

VEPP-2000 photo

Motivation for round beams

✓ Geometrical factor: $(1 + \sigma_y / \sigma_x)^2 = 4$ ✓ Beam-beam parameter enhancement(!): $\xi \ge 0.1$

✓Higher Touschek lifetime at low collision energies!

Solenoid of the Final Focus

1 – iron yoke, 2 – LHe vessel, 3 – LN screen, 4 – room temperature wall, 5 – LN liner, 6 – NbTi coils, 7 – Nb₃Sn coils, 8 – NbTi compensating detector field solenoid $\frac{1}{2}$

Beam Sizes measured by CCD monitors

Three options with different solenoids polarities (each twists plane by 45°)

Working point in different optics

 v_X

VEPP-2000: Luminosity vs.energy

VEPP-2000: Luminosity energy scan

Seasons 2010-2011, 2011-2012, 2012-2013

Beam current

Beam-beam parameter vs. energy

Beam-Beam sigma/pi-mode measurements

 $\Delta v = \arccos(\cos(\pi v_0) - 2\pi\xi\sin(\pi v_0))/\pi - v_0$

E= 392.5 MeV beam energy, RF voltage 35 kV (violet poits) and 17 kV (blue points).

$$\rightarrow \xi = 0.125$$

 $\Delta v = 0.087$

Energy measurement: Compton Back-Scattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Energy measurement: resonance depolarization

Upgraded to 1 GeV BEP's dipole (26 kGs)

Reduced gap: from 40 mm to 32 mm. Narrowed width of the flat part of a pole: from 120 mm to 100 mm. Increased width of a return yoke.

VEPP-2000 summary

- Three seasons with data taking for physics have shown very good collider performance, limited only by positrons accumulation rate. Maximum luminosity achieved 1.3*10³¹ cm⁻²s⁻¹ at 0.51 GeV and 3*10³¹ cm⁻²s⁻¹ at 0.9 GeV.
- BEP's upgrade to 1 GeV and 10 times higher positron production rate, demonstrated recently at new injector complex VEPP-5, will ensure realization of the project luminosity goals in the full energy range.
- Next physics run is expected in the end of 2014.

VEPP-4 near future plans

- Beam-beam test experiment with smaller beta_x but larger D_x - to prove gain in collision currents and in luminosity
- R measurements and two gamma physics with increased beam energy up to 4.5-4.7 GeV (depends on RF)
- CPT test by resonance depolarization of two beams with 10⁻⁸ accuracy
- New transfer lines from VEPP-5 positron/electron injector complex commissioning

VEPP-4 schematic view

VEPP-4M

VEPP-4 parameters and experimental facilities

Circumference, P (m)	366.075
Revolution frequency, f_0 (kHz)	818.924
Revolution period, T_0 (ns)	1221
Maximum energy, E (GeV)	5.3 ^{*)}
Momentum compaction factor, α	0.017
Betatron tunes, Q_x/Q_z	8.54/7.58
Synchrotron tune, Qs	0.012
Natural chromaticity, 失/ 失	-14.5/-20.3
Parameters at 1.8 GeV	
Parameters at 1.8 GeV Damping times, t/t/t/(ms)	70/35/70
Parameters at 1.8 GeVDamping times, $\tau_{z}/\tau_{x}/\tau_{s}$ (ms)Horizontal emittance, ε_{x} (nm-rad)	70/35/70 17
Parameters at 1.8 GeVDamping times, $\tau_{e}/\tau_{s}/\tau_{s}$ (ms)Horizontal emittance, s_{e} (nm-rad)Energy spread, o_{E}/E	70/35/70 17 4×10 ⁻⁴
Parameters at 1.8 GeVDamping times, $\tau_{e}/\tau_{s}/\tau_{s}$ (ms)Horizontal emittance, ε_{x} (nm-rad)Energy spread, $\sigma_{\overline{E}}/E$ Bunch length, $\sigma_{\overline{L}}$ (cm)	70/35/70 17 4×10 ⁻⁴ 6
Parameters at 1.8 GeVDamping times, $\tau_{e}/\tau_{s}/\tau_{s}$ (ms)Horizontal emittance, s_{x} (nm-rad)Energy spread, $\sigma_{\overline{E}}/E$ Bunch length, $\sigma_{\overline{L}}$ (cm)Energy loss/turn, ΔU (keV)	70/35/70 17 4×10 ⁻⁴ 6 16

- Detector KEDR for HEP experiments
- Electron tagging system at VEPP-4 for two-photon experiments
- SR experiments at VEPP-3
- SR experiments at VEPP-4
- Internal gas target for nuclear physics at VEPP-3
- Electron/gamma test beam facility for detector calibration
- Compton backscattering system
- High resolution polarization measurement system for CPT study
- Sophisticated beam diagnostics for accelerator experiments

- Beam energy range varied from 0.9 GeV up to 5.0 GeV
- \bullet Beam energy calibration using resonant depolarization method with the record accuracy of $10^{\text{-}6}$
- On-line monitoring of the beam energy using the Compton back scattering method with the accuracy of 5.10⁻⁵
- Universal detector KEDR comparable with modern detectors used for high-energy physics experiments at the electron-positron colliders:
 - system of registration of scattered electrons and positrons with the record resolution 10^{-3} ,
 - liquid-krypton electromagnetic calorimeter,
 - system of aerogel Cerenkov counters.

Beam energy measurement

http://v4.inp.nsk.su

Resonant depolarization provides a record accuracy in energy calibration

Compton back-scattering – routine energy monitoring during HEP experiment runs

Particle mass measurements at VEPP-4

Particle	E, MeV	Accuracy, $\Delta E/E$	Detector	Years
J/ψ	3096.93±0.10	3.2.10-5	OLA	1979-1980
ψ'	3685.00±0.12	3.3.10-5	OLA	1979-1980
Υ	9460.57±0.09±0.05	1.2.10-5	MD-1	1983-1985
Υ'	10023.5±0.5	$5.0 \cdot 10^{-5}$	MD-1	1983-1985
Υ"	10355.2±0.5	4.8.10-5	MD-1	1983-1985
J/ψ	3096.917±0.010±0.007	3.5.10-6	KEDR	2002-2008
ψ'	3686.119±0.006±0.010	3.0.10-6	KEDR	2002-2008
ψ"	3772.9±0.5±0.6	$2.1 \cdot 10^{-4}$	KEDR	2002-2006
D^0	1865.43±0.60±0.38	3.8.10-4	KEDR	2002-2005
D^+	1863.39±0.45±0.29	2.9.10-4	KEDR	2002-2005
τ	$1776.69^{+0.17}_{-0.19}\pm0.15$	1.3.10-4	KEDR	2005-2008

Precise polarization experiments

- New Touschek polarimeter is commissioned. The registration efficiency is increased by an order of magnitude.
- Total count rate at 2 mA beam current is now 1.5-2.0 MHz (was 0.1-0.2 MHz).
 An absolute record 1.5 10⁻⁹ accuracy of the measurement of depolarization frequency is achieved.
- For CPT test experiment, the 10⁻⁸ accuracy of comparison of the electron and positron spin frequency is real now.

"Nano- resolution": scan rate = 2.5 eV/s relative error ~10⁻⁹

Increase in VEPP-4M luminosity at low energy (proposal)

We plan to test this proposal in a special experiment

SR source in the VEPP-4 tunnel as an option

Longitudinally polarized beams (wait approval)

(Project for VEPP-4: 1981, 1983)

Super C τ Factory Prototype (from ϕ to ψ)

Crab Waist e⁺e⁻ Factory providing in the energy range from 0.5 GeV to 1.55 GeV the peak luminosity from 10³⁴ to 5x10³⁴ cm⁻²s⁻¹

10 times cheaper than SuperC τ Factory

• Since 2002 VEPP-4M collider with detector KEDR provides worldclass results for HEP community

• Many other experimental programs (SR, nuclear physics, test beams, accelerator physics study, etc.) are successfully performed at the accelerator facility

• Different scenarios of the future at VEPP-4 (or with the help of its infrastructure) are considered intensively

NEW INJECTOR COMPLEX FOR BINP's COLLIDERS

LINACS to GENERATE e⁺ and ACCELERATE e⁺ and e⁻ to 500 MeV.

日日月

DAMPING RING for STORAGE e+, e-

Transfer line to VEPP-2000 collider complex

Novosibirsk Super Tau-Charm factory

Status of the project:

- •Conceptual design of the machine and detector is complete
- •Civil engineering and infrastructure design is complete
- •Road map is ready (6 years for realization)
- •Project is preliminary approved by the Russian government

Super C/tau Factory at Novosibirsk (physics)

D-Dbar mixing

- CP violation searches in charm decays
- Rare and forbidden charm decays
- Standard Model tests in τ lepton decays
- Searches for lepton flavor violation $\tau \rightarrow \mu \gamma$
- **CP/T** violation searches in τ lepton decays

Requirements: $L > 10^{35}$ cm⁻² s⁻¹, longitudinal polarization (Polarization may increase sensitivity by several times!)

Project waits of final government's approval!