Recent Results on τ Lepton Physics from Belle

Simon Eidelman
Budker Institute of Nuclear Physics SB RAS and
Novosibirsk State University,
Novosibirsk, Russia
(for the Belle Collaboration)

Outline

1. Belle experiment
2. Search for LFV decays
3. Measurement of τ lifetime
4. Study of $\tau^- \rightarrow K^0_S X^- \nu_\tau$
5. Summary
Belle Experiment – I

Belle Detector

SC solenoid
1.5T

CsI(Tl)
16\times X_0

TOF counter

Aerogel Cherenkov cnt.
\text{n=1.015~1.030}

3.5 GeV e^+

8 GeV e^-

Central Drift Chamber
small cell +He/C_2H_6

Si vtx. det.
3 lyr. DSSD

μ / K_L detection
14/15 lyr. RPC+Fe

S. Eidelman, BINP
Belle Experiment – II

<table>
<thead>
<tr>
<th>Process</th>
<th>σ, nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \to e^+e^-(\gamma)$</td>
<td>123.5</td>
</tr>
<tr>
<td>$15^\circ \leq \theta \leq 165^\circ$</td>
<td></td>
</tr>
<tr>
<td>$e^+e^- \to \mu^+\mu^-(\gamma)$</td>
<td>1.005</td>
</tr>
<tr>
<td>$e^+e^- \to q\bar{q}$ ($q = u, d, s, c$)</td>
<td>3.39</td>
</tr>
<tr>
<td>$e^+e^- \to b\bar{b}$</td>
<td>1.05</td>
</tr>
<tr>
<td>$e^+e^- \to e^+e^-f\bar{f}$</td>
<td>72.6</td>
</tr>
<tr>
<td>($f = u, d, s, c, e, \mu, \tau$)</td>
<td></td>
</tr>
<tr>
<td>$e^+e^- \to \tau^+\tau^-(\gamma)$</td>
<td>0.919</td>
</tr>
</tbody>
</table>

- ~ 450 members, 80 Inst., 18 countries
- $E_{e^-} = 8$ GeV, $E_{e^+} = 3.5$ GeV
- Continuous injection, record lumi
- $L_{\text{max}} = 2.11 \times 10^{34}$ cm$^{-2}$s$^{-1}$
- $\int Ldt \simeq 1$ ab$^{-1}$, $N_{\tau\tau} \simeq 10^9$
- B-factory is also a τ-factory
Lepton-flavor-violating (LFV) τ Decays

<table>
<thead>
<tr>
<th>Model</th>
<th>$B(\tau \to \mu \gamma)$</th>
<th>$B(\tau \to \ell\ell\ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSUGRA+seesaw</td>
<td>10^{-8}</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>SUSY+SO(10)</td>
<td>10^{-8}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>SM+seesaw</td>
<td>10^{-9}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Non-universal Z'</td>
<td>10^{-9}</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>SUSY+Higgs</td>
<td>10^{-10}</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>

- Probability of LFV decays of charged leptons is extremely small in the Standard Model (SM), $B(\tau \to \ell\gamma) \sim \left(\frac{\Delta m^2_{\nu}}{m_W^2}\right)^2 < 10^{-54}$

- Many models beyond the SM predict LFV decays with the branching fractions up to $\sim 10^{-8}$. LFV observation – clear signature of New Physics (NP)

- τ lepton is an excellent laboratory to search for the LFV decays: enhanced couplings to new particles and large number of LFV decay modes

- Different τ LFV decay modes test various NP models
Search for $\tau \rightarrow \ell hh', \, \ell = e, \mu; \, h, h' = \pi^\pm, K^\pm$

14 modes were studied with 854 fb$^{-1}$: 8 LFV $\tau^- \rightarrow \ell^- h^+ h'^-$ and 6 lepton-number-violating $\tau^- \rightarrow \ell^+ h^- h'^-$ decays

One event in the signal region was found for \(\tau^{-} \to \mu^{+}\pi^{-}\pi^{-} \) and \(\tau^{-} \to \mu^{-}\pi^{+}K^{-} \), no events for the other 12 modes. For all modes the number of observed signal events agrees with the number of expected background events.

Obtained upper limits at 90% CL: \(\mathcal{B}(\tau \to \ell hh') < (2.0 \div 8.6) \times 10^{-8} \)
Results on LFV decays of τ

48 different LFV modes were studied at Belle

46 modes were analysed with almost full Belle statistics ($\sim 1 \text{ ab}^{-1}$) and the world best upper limits were obtained. A full statistics study of $\tau \rightarrow \mu(e)\gamma$ is in progress and will be completed soon.
Ongoing studies of the general properties of τ at Belle: Lifetime of τ-lepton, electric dipole moment, Michel parameters in leptonic and radiative leptonic τ decays, anomalous magnetic moment of τ in radiative leptonic decays

Precise measurement of τ_T – a test of lepton universality

$$\frac{2B(W \rightarrow \tau \nu_\tau)}{B(W \rightarrow \mu \nu_\mu) + B(W \rightarrow e \nu_e)} = 1.066 \pm 0.025: 2.6\sigma \text{ deviation from the SM}$$

S. Schael et al. arXiv:1302.3415

S. Eidelman, BINP
Measurement of $\tau\tau$ – Method

$e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\pi^+\pi^+\pi^-\bar{\nu}_\tau, \pi^+\pi^-\pi^-\nu_\tau)$ with $\int Ldt = 711 \text{ fb}^{-1}$, $N_{\tau\tau} = 650 \times 10^6$

- p_τ direction – two-fold ambiguity in CMS, we use the average axis

- Asymmetric-energy layout $\Rightarrow \tau^+\tau^-$ production point in LAB determined independently of IP

- CPT test from separate τ^- and τ^+ lifetimes
Measurement of τ_τ – Selection 1

Selection criteria:

- Event is separated into two hemispheres in CMS, thrust > 0.9
- Each hemisphere contains 3 charged pions with the ± 1 net charge
- There are no additional K^0_S, Λ, π^0 candidates, the number of additional photons $N_\gamma < 6$ with $E_\gamma^{TOT} < 0.7$ GeV
- $P_\perp(6\pi) > 0.5$ GeV/c, 4 GeV/$c^2 < M_{inv}(6\pi) < 10.25$ GeV/c^2
- Pseudomass $\sqrt{M_h^2 + 2(E_{beam} - E_h)(E_h - P_h)} < 1.8$ GeV/c^2, $h = (3\pi^-)$, $(3\pi)^+$
- Cuts on the quality parameters of the vertex fits and τ axis reconstruction
- Minimal distance between τ^- and τ^+ axes in LAB $dl < 0.02$ cm

1.15×10^6 events selected with $\sim 2\%$ background, mainly from $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s$)
Measurement of $\tau\tau$ – Selection 2

Pseudomass spectrum,
black - data, blue - MC

Stability of the dl-cut
Measurement of τ_τ – A Fit of the Decay Length Distribution

Decay length PDF

$$P(x) = \mathcal{N} \int e^{-x'/\lambda_\tau} R(x - x'; \vec{P}) dx' + N_{uds} R(x; \vec{P}) + P_{cb}(x),$$

$$R(x; \vec{P}) = (1 - 2.5x) \cdot \exp \left(-\frac{(x - P_1)^2}{2\sigma^2} \right),$$

$$\sigma = P_2 + P_3|x - P_1|^{1/2} + P_4|x - P_1| + P_5|x - P_1|^{3/2}$$

- Free parameters of the fit: λ_τ, \mathcal{N}, $\vec{P} = (P_1, ..., P_5)$
- λ_τ - estimator of $c\tau_\tau$, $c\tau_\tau = \lambda_\tau + \Delta_{\text{corr}}$, Δ_{corr} is determined from MC;
- $R(x; \vec{P})$ - detector resolution function;
- N_{uds} - contribution of background from $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s$) (predicted by MC)
- $P_{cb}(x)$ - PDF for background from $e^+e^- \rightarrow q\bar{q}$ ($q = c, b$) (fixed from MC)

From the fit $\lambda_\tau = 86.53 \pm 0.16 \mu m$ and with $\Delta_{\text{corr}} = 0.46 \mu m$: $c\tau_\tau = 86.99 \pm 0.16 \mu m$
Measurement of τ_{τ} - Resolution

From ϕ to ψ, Rome

September 9-12, 2013

Entries / 2.5 μm

$\sqrt{\text{Frac}}$ = 770.8 / 794

P_1: 0.2692×10^{05}
P_2: 0.4629×10^{-05}
P_3: 0.3845×10^{-02}
P_4: 0.1015×10^{-02}
P_5: 0.7377×10^{-02}
P_6: 0.1705×10^{-01}

$\text{l}_{\text{uds}} + \text{yy}$

charm

BB

Pull
Measurement of τ_τ – Preliminary Result

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta c\tau$ (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD alignment</td>
<td>0.090</td>
</tr>
<tr>
<td>Fit range</td>
<td>0.020</td>
</tr>
<tr>
<td>ISR and FSR description</td>
<td>0.018</td>
</tr>
<tr>
<td>Beam energy</td>
<td>0.016</td>
</tr>
<tr>
<td>Background contribution</td>
<td>0.010</td>
</tr>
<tr>
<td>τ-lepton mass accuracy</td>
<td>0.009</td>
</tr>
<tr>
<td>Total</td>
<td>0.096</td>
</tr>
</tbody>
</table>

$\tau_\tau = (290.17 \pm 0.50 \text{(stat.)} \pm 0.33 \text{(syst.)}) \times 10^{-15} \text{ s} \quad (290.6 \pm 1.0) \times 10^{-15} \text{ s}$

$|\tau_{\tau^+} - \tau_{\tau^-}|/\tau_{\text{average}} < 7.0 \times 10^{-3}$ at 90% CL
Hadronic τ Decays

Cabibbo-allowed decays ($\mathcal{B} \sim \cos^2 \theta_C$)

$\mathcal{B}(S = 0) = (61.85 \pm 0.11)\%$ (PDG)

Cabibbo-suppressed decays ($\mathcal{B} \sim \sin^2 \theta_C$)

$\mathcal{B}(S = -1) = (2.87 \pm 0.07)\%$ (PDG)

- Search for CP violation
- High-precision measurement of branching fractions, studies of rare decays
- Measurement of low-energy hadronic spectral functions
 - Determination of intermediate mechanisms
 - Precise measurement of masses and widths of the intermediate mesons
- Comparison with hadronic form factors from e^+e^- experiments to check CVC
- Measurement of $\Gamma_{\text{inclusive}}(S = -1)$ to determine s-quark mass and V_{us}:

$$|V_{us}| = \sqrt{\frac{R_{\text{strange}}}{R_{\text{non-strange}}} - \delta R_{\text{theory}}}$$

- $R_{\text{strange}} = \mathcal{B}_{\text{strange}}/\mathcal{B}_e$
- $R_{\text{non-strange}} = \mathcal{B}_{\text{non-strange}}/\mathcal{B}_e$
- δR_{theory} - SU(3)-breaking contribution
Study of $\tau^- \to K^0_S X^- \nu_\tau$ decays

A data sample of $\int L dt = 669 \text{ fb}^{-1}$ with $N_{\tau\tau} = 616 \times 10^6$ was used to study inclusive decay $\tau^- \to K^0_S X^- \nu_\tau$ as well as 6 exclusive modes:

$\pi^- K^0_S \nu_\tau, \ K^- K^0_S \nu_\tau, \ \pi^- K^0_S K^0_S \nu_\tau$

$\pi^- K^0_S \pi^0 \nu_\tau, \ K^- K^0_S \pi^0 \nu_\tau, \ \pi^- K^0_S K^0_S \pi^0 \nu_\tau$

After the standard $\tau\tau$ preselection we select events with particular configuration.

- Event is separated into two hemispheres in CMS, thrust > 0.9
- Tag side: 1-prong (e, μ or $\pi/K(n \geq 0)\pi^0$)
- Signal side:
 - $K^0_S \to \pi^+ \pi^-$: $0.485 < M_{\pi\pi} < 0.511 \text{ GeV/c}^2 (\pm 5\sigma)$, $2 \text{ cm} < L_{K^0_S} < 20 \text{ cm}$, $\Delta Z_{1,2} < 2.5 \text{ cm}$
 - $\pi^0 \to \gamma\gamma$: $-6 < S_{\gamma\gamma}(= \frac{m_{\gamma\gamma} - m_{\pi^0}}{\sigma_{\gamma\gamma}}) < 5$
 - Charged kaon (pion): $P_{K/\pi} = \frac{L_K}{L_{\pi^+} + L_K} > 0.7 (< 0.7)$
- $E_{\gamma extra}^{LAB} < 0.2 \text{ GeV}$
Calculation of Branching Fractions

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\pi^- K^0_S$</th>
<th>$K^- K^0_S$</th>
<th>$\pi^- K^0_S \pi^0$</th>
<th>$K^- K^0_S \pi^0$</th>
<th>$\pi^0 K^0_S K^0_S$</th>
<th>$\pi^- K^0_S K^0_S \pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{data}</td>
<td>397806 ± 631</td>
<td>157836 ± 541</td>
<td>32701 ± 295</td>
<td>26605 ± 208</td>
<td>8267 ± 109</td>
<td>6684 ± 96</td>
</tr>
<tr>
<td>ε_{det} (%)</td>
<td>9.66</td>
<td>7.09</td>
<td>6.69</td>
<td>2.65</td>
<td>2.19</td>
<td>2.47</td>
</tr>
<tr>
<td>N_{bg} (%)</td>
<td>4.20 ± 0.46</td>
<td>8.86 ± 0.05</td>
<td>3.55 ± 0.07</td>
<td>5.60 ± 0.10</td>
<td>2.43 ± 0.10</td>
<td>7.89 ± 0.24</td>
</tr>
<tr>
<td>N_{data} (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\Delta B_B)^{\text{syst}}$ (%)</td>
<td>2.4</td>
<td>2.5</td>
<td>4.0</td>
<td>3.9</td>
<td>5.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

The main non-$\tau\tau$ background comes from $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$). To take into account cross-feed background, 6 decay modes are analysed simultaneously:

$$N_{\text{sig}}^i = \sum_j (E^{-1})_{ij} (N_{\text{data}}^j - N_{\text{bg}}^j)$$

For the $\pi^- K^0_S \nu$, $K^- K^0_S \nu$, $\pi^- K^0_S \pi^0 \nu$, and $K^- K^0_S \pi^0 \nu$ modes lepton tag is applied and normalisation to the two-lepton events ($\tau^{\mp} \rightarrow e^{\mp} \nu \nu$, $\tau^{\pm} \rightarrow \mu^{\pm} \nu \nu$) method is used to calculate branching fractions:

$$B_i = \frac{N_{\text{sig}}^i}{\varepsilon_{e-\mu} B_{e} B_{\mu}}$$

To increase statistics for the remaining $\pi^- K^0_S K^0_S \nu$ and $\pi^- K^0_S K^0_S \pi^0 \nu$ modes, the one-prong tag and luminosity normalisation method are used:

$$B_i = \frac{N_{\text{sig}}^i}{2 L \sigma_{\tau\tau} B_{1-\text{prong}}}$$
Preliminary Results on Branching Fractions

\[B(\tau \to K_S^0 \pi^- \nu_\tau) = (9.15 \pm 0.01 \pm 0.15) \times 10^{-3} \]
Unfolded invariant mass distributions (all combinations) were obtained for the $\tau^− \rightarrow K_S^0\pi^-\pi^0\nu_\tau$ and $\tau^− \rightarrow K_S^0K^-\pi^0\nu_\tau$ modes.
In the study of visible invariant mass spectra for $\tau^- \rightarrow \pi^- K^0_S K^0_S \pi^0 \nu_\tau$ events, intermediate structures are observed, as well as indication of the $f_1(1420)\pi^- \nu_\tau$ (2.7σ) mechanism is seen.

$f_1(1285)\pi^- \nu_\tau$ (5.9σ) and $K^*(892)K^0_S \nu_\tau$ intermediate structures are observed, as well as indication of the $f_1(1420)\pi^- \nu_\tau$ (2.7σ) mechanism is seen.

$$B(\tau^- \rightarrow f_1(1285) \rightarrow K^0_S K^0_S \pi^0) \pi^- \nu_\tau = (0.74 \pm 0.12 \pm 0.07) \times 10^{-5}$$

$$B(\tau^- \rightarrow K^*(892) \rightarrow K^0_S \pi^-) K^0_S \pi^0 \nu_\tau = (1.06 \pm 0.15 \pm 0.09) \times 10^{-5}$$
Ongoing Studies of Hadronic τ Decays at Belle

- Spectral function of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_\tau$ decay
- Spectral function of $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$ decay
- Search for CP violation in $\tau^- \rightarrow K^- \pi^- \pi^+ \nu_\tau$ decay
- Branching fractions of $\tau^- \rightarrow \pi^- \geq 2\pi^0 \nu_\tau$
- Branching fractions of $\tau^- \rightarrow h_1^- h_2^- h_3^+ \nu_\tau$, $h_{1,2,3} = \pi$, K
- Search for 2nd class currents in $\tau^- \rightarrow \eta \pi^- \nu_\tau$ and $\tau^- \rightarrow \eta' \pi^- \nu_\tau$
Summary

- Belle collected the world largest data sample of $\sim 1 \text{ ab}^{-1}$ ($N_{\tau\tau} \approx 10^9$) near the $\Upsilon(4S)$ opening a new era in precise τ physics.

- 48 different LFV modes studied, upper limits on B of the order of 10^{-8} obtained.

- With 711 fb$^{-1}$ the τ lifetime measured using a new method:

 $\tau_{\tau} = (290.17 \pm 0.50 \text{(stat.)} \pm 0.33 \text{(syst.)}) \times 10^{-15}$ s

 $|\tau_{\tau^+} - \tau_{\tau^-}|/\tau_{\text{average}} < 7.0 \times 10^{-3}$ at 90% CL

- Branching fractions for six τ decay modes with K_S^0 and for the inclusive decay $\tau^- \rightarrow K_S^0X^0\nu_{\tau}$ have been measured. Unfolded invariant mass spectra have been obtained for the $\tau^- \rightarrow K_S^0\pi^-\pi^0\nu_{\tau}$ and $\tau^- \rightarrow K_S^0K^-\pi^0\nu_{\tau}$ modes, for the latter $f_1(1285)\pi^-\nu_{\tau}$ and $K^{*-}(892)K_S^0\nu_{\tau}$ mechanisms observed.

- Various ongoing analyses of τ decays, new results expected soon.