## Recent Results of Light Hadron Spectroscopy from BESIII

#### Xinying Song (For BESIII collaboration)



中國科學院為能物路納完備 Institute of High Energy Physics Chinese Academy of Sciences

International Workshop on e<sup>+</sup> e<sup>-</sup> collisions from Phi to Psi 2013 Rome, Sapienza University, September 9-12th, 2013

## outline

- Introduction
- Recent results of light hadron spectroscopy
  - > PWA of  $J/\psi \rightarrow \gamma \omega \phi$ > PWA of  $J/\psi \rightarrow \gamma \eta \eta$ > PWA of  $\psi(3686) \rightarrow p \ \overline{p} \pi^{o}$ > PWA of  $\psi(3686) \rightarrow p \ \overline{p} \eta$
- Summary

#### Bird View of BEPCII/BESIII

#### Storage ring

#### BESIII detector

#### A STATE OF

#### Beam energy 1.0-2.3 GeV Energy spread: $5.16 \times 10^{-4}$

NIM A614, 345 (2010)

#### The BESIII Detector

Linac



Data Set: 225M J/ψ data; 106M ψ(2S) data; Collected in 2009, @ BESIII.

## Scalar glueball candidates

°0 MG

- LQCD:
- > 0<sup>++</sup>, low mass glueball,
   1.5~1.7 GeV
- ≻ J⁄ψ→γPP, even++
- f<sub>0</sub>(1710), f<sub>0</sub>(1500):
   glueball candidates.

 Experiments: f<sub>0</sub>(1710), f<sub>0</sub>(1790),X(1810); the same resonance?



### Introduction to Partial Wave Analysis(PWA)

• Construct amplitude  $A_i$  for each possible partial wave, using covariant tensor amplitude approach:

$$A_i = A_{prod} \times Propagator \times A_{decay} \tag{1}$$

eg.  $J/\psi \to \gamma X, X \to Y + Z,$ 

- $-A_{prod}$ ,  $A_{decay}$ : the amplitudes on how X be produced and decays; Constructed with orbital angular momentum covariant tensors, covariant spin wave functions, operators and momenta of parent particles.
- Propagator:

usually 
$$f_{YZ}^X = \frac{1}{M_X^2 - s_{YZ} - iM_X\Gamma_X}$$

B.S. Zou and D.V.Bugg, Eur. Phys. J. A 16, 537–547 (2003)

• Construct differential cross section:

$$\frac{d\sigma}{d\Omega} = |\sum_{i} A_i|^2 \tag{2}$$

6

eg.  $J/\psi \rightarrow \gamma X, X \rightarrow Pseudoscalar + Pseudoscalar,$ 

$$\frac{d\sigma}{d\Omega} = |A^{0^{++}} + A^{2^{++}} + A^{4^{++}} + \dots|^2 \tag{3}$$

• Minimize the minus log likelihood function:

$$-\ln\mathcal{L} = -\sum_{i=1}^{n} \ln(\frac{d\sigma}{d\Omega}/\sigma)$$
(4)

• BES: Event –based PWA framework.

 $J/\psi \rightarrow \gamma \eta \eta$ 

> First studied by CB,  $f_0(1710)$ ; > Crystal barrel(2002): p p→  $\pi^0\eta\eta$ ,  $f_0(1500)$  found; > E835(2006): p p→  $\pi^0\eta\eta$ , found  $f_0(1500)$  and  $f_0(1710)$ ; > WA102, GAMS:  $\eta\eta$  mode,  $f_0(1710)$ ;

#### •BESIII:

- ≻A good lab;
- ≻Good performance of CsI crystal EMC;
- > Low background.



## PWA of $J/\psi \rightarrow \gamma \eta \eta$ , $\eta \rightarrow \gamma \gamma$



>J/ψ→ φη, φ→γη, select events outside φ mass window.
 >BKG: mainly non-η background, estimated by η sideband (blue shaded); low.

**>BKG subtraction:** ln L <sup>signal</sup> = ln L <sup>data</sup>-ln L <sup>sideband</sup>;

PWA of  $J/\psi \rightarrow \gamma \eta \eta$ 

> The best solution:  $f_0(1500)$ ,  $f_0(1710)$ ,  $f_0(2100)$ ;  $f'_2(1525)$ ,  $f_2(1810)$ ,  $f_2(2340)$ phase space+ $\phi\eta$ ;

#### >No significant evidence:

For the scalar:  $f_0(1790)$  $f_0(1370)$ ,  $f_0(2020)$ ,  $f_0(2200)$ and  $f_0(2330)$ ;

For the tensor: the possible tesor  $f_2(2010)$ ,  $f_2(2150)$ and  $f_J(2220)$ ;

Change between with/without adding them in global fit : one resource of sys.error.

> φη background: impact from interference of φ tail considered. An alternative fit without φη is taken as one resource of sys.error.

#### PRD. 87, 092009 (2013)



| Resonance         | $Mass(MeV/c^2)$           | $\operatorname{Width}(\operatorname{MeV}/c^2)$ | $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ | Significance  |
|-------------------|---------------------------|------------------------------------------------|---------------------------------------------------------|---------------|
| $f_0(1500)$       | $1468^{+14+23}_{-15-74}$  | $136^{+41+28}_{-26-100}$                       | $(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$       | $8.2 \sigma$  |
| $f_0(1710)$       | $1759 \pm 6^{+14}_{-25}$  | $172 \pm 10^{+32}_{-16}$                       | $(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$       | 25.0 $\sigma$ |
| $f_0(2100)$       | $2081 \pm 13^{+24}_{-36}$ | $273^{+27+70}_{-24-23}$                        | $(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$       | 13.9 $\sigma$ |
| $f_{2}^{'}(1525)$ | $1513 \pm 5^{+4}_{-10}$   | $75_{-10-8}^{+12+16}$                          | $(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$       | 11.0 $\sigma$ |
| $f_2(1810)$       | $1822^{+29+66}_{-24-57}$  | $229^{+52+88}_{-42-155}$                       | $(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$       | $6.4 \sigma$  |
| $f_2(2340)$       | $2362^{+31+140}_{-30-63}$ | $334_{-54-100}^{+62+165}$                      | $(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$       | 7.6 $\sigma$  |

- Dominant scalar: f<sub>0</sub>(1710), f<sub>0</sub>(2100);
- Tensor components:  $f'_2(1525), f_2(1810), f_2(2340)$ .
- No significant  $f_0(1370)$ ,  $f_0(1790)$ ,  $f_J(2220)$  in  $\eta\eta$  mode ;
- Br of  $f_0(1710)$  in J/ $\psi$  radiative decays : LQCD;

#### • Double OZI supressed,





J⁄ψ→γωφ (DOZI)

predicted  $\propto 1/10 J/\psi \rightarrow \gamma \phi \phi$  (OZI)

#### • BESII



 $M = 1812_{-26}^{+19} \pm 18MeV / c^{2}$   $\Gamma = 105 \pm 20 \pm 28MeV / c^{2}$ J<sup>PC</sup> favors O<sup>++</sup> over O<sup>-+</sup> and 2<sup>++</sup>

PRL 96, 162002(2006)



13

#### PRD 87,032008(2013)

## PWA of $J/\psi \rightarrow \gamma \omega \phi$

**To get the best solution:** > M,  $\Gamma$  and J<sup>PC</sup> of X(1810); > Other known mesons @ PDG; > Different J<sup>PC</sup> of phase space; > Different combinations of additional mesons in PDG; **The best solution:** X(1810), f<sub>0</sub>(2020), f<sub>2</sub>(1950),

 $\eta(2225)$ , phase space and BKG.

#### For systematic error:

> $f_2(1920)$ ,  $f_0(2020)$ ,  $\eta(2225)$ : standard deviation from PDG; Replaced by others of similar masses and same  $J^{PC}$ ;

> Uncertainty of model dependence of X(1810).



#### • X(1810):

# $\sum M = 1795 \pm 7(\text{stat})^{+13} - 5} (\text{sys}) \pm 19 (\text{mod});$ $\Gamma = 95 \pm 10(\text{stat})^{+21} - 34} (\text{sys}) \pm 75 (\text{mod});$ $B(J/\psi \rightarrow \gamma X(1810)) \times B(X(1810) \rightarrow \omega \phi)$ $= (2.00 \pm 0.08(\text{stat})^{+0.45} - 1.00} (\text{sys}) \pm 1.30 (\text{mod})) \times 10^{-4}$

- > Confirmed @ BESIII,  $J^{PC} = O^{++}$ ;
- > Compare with  $f_0(1710)$ : no conclusion.
- > Need further study;

Search for X(1810) in other mode: J/ψ→φωφ, ωωφ, do the couple channels analysis...

## Baryon spectroscopyNRCQM model

 "missing resonance problem";
 Mass revesal problem: N\*(1535), N\*(1440);
 Need experimental measurements...



• J/ $\psi$ ,  $\psi$ ': N\*,  $\Lambda$ \*,  $\Xi$ \*,  $\Sigma$ \*

Advantages: Isospin conservation, rich production of hybrid baryons (qqqg) ...



**PWA of ψ(3686)**→p pη



## **PWA of ψ(3686)**→p pη

- BKG: sidebands and continuum data; low;
- **Best solution**: N(1535) combined with an interfering phase space;
- N(1535):
- $M = 1524 \pm 5^{+10} MeV/c^{2}$  $\Gamma = 130^{+27} + 56 MeV/c^{2} MeV/c^{2}$
- •p  $\overline{p}$  enhancement <3 $\sigma$ ;
- •Supressed compare with "12% rule":

$$Q_{p\bar{p}\eta} = \frac{B(\psi(2S) \to \eta p\bar{p})}{B(J/\psi \to \eta p\bar{p})} = (3.2 \pm 0.4)\%$$



## PWA of $\psi(3686) \rightarrow p \ p\pi^0$



 $\psi(3686) \rightarrow XJ/\psi$  subtracted.

Shaded : BKG 2 sources, Continuum process, non-π<sup>o</sup> BKG ;

## PWA of $\psi(3686) \rightarrow p \ \overline{p}\pi^0$

## • Two body decay:

- $\checkmark$  ψ(3686)→ p  $\overline{N}^*$ ,  $\overline{N}^*$ →  $\overline{p} \pi^o$  +c.c → X $\pi^o$ , X→p p
- > Isospin conservation:  $\Delta$  suppressed;
- The best solution: N(1440),N(1520),N(2090),N(1535), N(1650),N(1720),N(2300),N(2570) (J<sup>PC</sup>);

## No significant evidence.

- N(1885) and N(2065), p p enhancement;
- The uncertainties from additional possible resonances are considered.





## PWA of ψ(3686)→p pπ<sup>0</sup> PRL 110, 022001(2013)

**B**(ψ(3686)→p pπ<sup>o</sup>)=(1.65±0.03±0.15)×10<sup>-4</sup>

| Resonance         | $M(\text{MeV}/c^2)$             | $\Gamma({\rm MeV}/c^2)$       | $\Delta S$ | $\Delta N_{ m dof}$ | Sig.                 |
|-------------------|---------------------------------|-------------------------------|------------|---------------------|----------------------|
| N(1440)           | $1390\substack{+11+21\\-21-30}$ | $340^{+46+70}_{-40-156}$      | 72.5       | 4                   | 11.5 <i>o</i>        |
| N(1520)           | $1510^{+3+11}_{-7-9}$           | $115\substack{+20+0\\-15-40}$ | 19.8       | 6                   | $5.0\sigma$          |
| N(1535)           | $1535^{+9+15}_{-8-22}$          | $120\substack{+20+0\\-20-42}$ | 49.4       | 4                   | 9.3 <i>o</i>         |
| N(1650)           | $1650^{+5+11}_{-5-30}$          | $150^{+21+14}_{-22-50}$       | 82.1       | 4                   | $12.2\sigma$         |
| N(1720)           | $1700^{+30+32}_{-28-35}$        | $450^{+109+149}_{-94-44}$     | 55.6       | 6                   | 9.6 <i>0</i>         |
| $N(2300)_{(1/2)}$ | + $2300^{+40+109}_{-30-0}$      | $340^{+30+110}_{-30-58}$      | 120.7      | 4                   | $15.0\sigma$         |
| N(2570)(5/2       | )-2570 $^{+19+34}_{-10-10}$     | $250^{+14+69}_{-24-21}$       | 78.9       | 6                   | <b>11.7</b> <i>o</i> |

2 new resonances
No significant N(1885) or N(2065)(<5σ)</li>
p p resonance < 4σ</li>

## Summary

- Light hadron spectroscopy: the recent results are presented,
  - ≻PWA of  $J/\psi \rightarrow \gamma \omega \phi$
  - ≻PWA of J⁄ψ→γηη
  - ightarrow PWA of ψ(3686)→p <u>p</u> π<sup>o</sup>
  - > PWA of ψ(3686)→p p η
- ~1 billion J/ $\psi$  & 0.4 billion  $\psi'$  events were taken last year;
- More results are expected to come soon !



## BACK UP

J/ψ→γ3(π<sup>+</sup> π<sup>-</sup>)



>BG: π<sup>o</sup>3(π<sup>+</sup>π<sup>-</sup>) +PHSP (3rd-order poly);
>B(J/ψ→γX(1840))×B(X(1840)→3(π<sup>+</sup>π<sup>-</sup>))
=(2.44±0.36<sup>+0.60</sup><sub>-0.74</sub>)×10<sup>-5</sup>;
No η' observed, B(η' → 3(π<sup>+</sup>π<sup>-</sup>)) < 3.1 × 10<sup>-5</sup>.

24

- New decay mode observed;
- M:X(1835) and X(p p), Г :not;
- Can't determine : a new or existing state?

• Further study about spin parity...



Ref[4]:PR L 106, 072002 (2011). Ref[13]: PRL 107, 182001 (2011). Ref[14]: PRL 108, 112003 (2012) Ref[15]:PRD 87, 032008 (2013).