Status of SuperKEKB and BELLE II

B.A.Shwartz on behalf of the Belle II collaboration

Budker Institute of Nuclear Physics of SB RAS, Novosibirsk State University Novosibirsk, Russia

- Introduction
- **B- and Super-B Physics**
- Collider
- Detector

During last ten years a lot of physics results came from two B-factories – Belle and BaBar

Peak lumi record at KEKB: L=2.1 x 10³⁴/cm²/sec with crab cavities

F/B asymmetric detectors

High vertex resolution, magnetic spectrometry, excellent calorimetry and sophisticated particle ID ability

Belle 2010 $Ldt \approx 1.5ab^{-1}$ BaBar 1999

The primary goal of the Belle and BaBar experiments was to discover the CP violation in B mesons and to measure the parameters of CPV. This was achieved by both experiments in 2001

At present most precise result from Belle:

 $sin 2\phi_1 = 0.667 \pm 0.023(stat) \pm 0.012(syst)$ $A_f = 0.006 \pm 0.016(stat) \pm 0.012(syst).$

Belle and BaBar averaged (HFAG 2012)

Mode	Average
J/ ϕ KS (η CP=-1)	0.665 ± 0.024
J/ ϕ KL (η CP=+1)	0.663 ± 0.041
J/ ψ K0	0.665 ± 0.022
ϕ (2S)KS (η CP=-1)	0.807 ± 0.067
ϕ (nS)K0	0.676 ± 0.021
χ c1KS (η CP=-1)	0.632 ± 0.099
All charmonium (incl. χ c0KS <i>etc.</i>)	0.679 ± 0.020

BaBar (PRD **79** (2009) 072009) Belle (PRL **108** (2012) 171802)

CP violation in the B system and unitarity triangle

 $\alpha + \beta + \gamma = \varphi_1 + \varphi_2 + \varphi_3 = (178^{+11}_{-12})^\circ$ (PDG 2012) in a good agreement with SM and theoretical prediction of Euclid.

Still certain room for New Physics search exists...

However, a lot of other important results were obtained

- •Observation of direct CP violation in B decays
- •Measurements of the CPV parameters in different modes (ϕK^0 , $\eta' K^0$, $K_S K_S K_S$, ...)
- •Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- •Observation of new charmonium-like and bottomonium-like hadronic states
- •b \rightarrow s transitions: probe for new sources of CPV and constraints from the b \rightarrow sy branching fraction
- •Forward-backward asymmetry (A_{FB}) in b \rightarrow sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- •Observation of D mixing
- •Search for lepton flavour violation in τ decays
- •Study of the hadronic τ decays
- •Precise measurement of the hadronic cross sections in $\gamma\gamma$ and $e^+e^-(\gamma_{ISR})$ processes

So wide researches area become possible because of clean event environment and well defined initial state in the e⁺e⁻ experiments as well as high luminosity and general purpose detector

At present SuperKEKB collider and Belle II detector are under construction at KEK (Japan)

Why do we need these equipment in the LHC era?

Search of New Physics – is a primary goal!

 $B \rightarrow s\gamma \ direct \ CPV$

ACP = (−0.8 ± 2.9)% (HFAG, Aug 2012)

SM: ACP ~ (0.44±0.24)% (T. Hurth et al., Nucl.Phys. B704 (2005) 56)

50 ab-1: O(0.1%) exp. sensitivity

 $\begin{array}{ll} B \rightarrow K^{\star}\gamma \ \ t\text{-dependent CPV} \\ SM: \ \ S_{CP}{}^{K^{\star}\gamma} \ \sim (2m_s/m_b)sin2\phi_1 \sim \text{-0.04} \end{array}$

 $S_{CP}^{K_{S\pi}0\gamma} = -0.15 \pm 0.20$ $A_{CP}^{K_{S\pi}0\gamma} = -0.07 \pm 0.12$

Expected sensitivity - 0.03 for

S in Ks pi0 gamma with 50 ab-1

Searches for lepton flavour violation in tau decays

In the SM the lepton flavour violation decays are extremely small:

Br($\tau \rightarrow l\gamma$) ~ 10⁻⁵⁴ Br($\tau \rightarrow 3$ leptons) ~ 10⁻¹⁴

Expected sensitivity $\tau \rightarrow \ell \gamma \quad \text{Br} \sim O(10^{-8})^{-9})$ $\tau \rightarrow \ell \ell \ell$, I+meson Br $\sim O(10^{-9})^{-10}$

Complementarity

to other intensity frontiers experiments (LHCb, BES III,);

Super B factory LHCb K experiments

G. Isidori et al., Ann.Rev.Nucl. Part.Sci. 60, 355 (2010)

B. Golob, KEK FF Workshop, Feb. 2012

Observabl	le	SM	Theory	Present	Future	Future Facility	
		prediction	error	result	error	Facinty	_
$ V_{us} = [K$	$\zeta \to \pi \ell \nu$]	input	$0.5\% \rightarrow 0.1\%_{Latt}$	0.2246 ± 0.0012	0.1%	K factory	
$ V_{cb} = [B$	$l \rightarrow X_c \ell \nu$]	input	1%	$(41.54 \pm 0.73) \times 10^{-3}$	1%	Super-B	
$ V_{ub} = [B$	$\beta \rightarrow \pi \ell \nu$]	input	$10\% \rightarrow 5\%_{Latt}$	$(3.38 \pm 0.36) \times 10^{-3}$	4%	Super-B	
γ [B	$\beta \rightarrow DK$]	input	< 1°	$(70^{+27}_{-30})^{\circ}$	3°	LHCb	_
$S_{B_d \rightarrow \psi K}$		$\sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb	
$SB_s \rightarrow \psi \phi$		0.036	$\lesssim 0.01$	$0.81^{+0.12}_{-0.32}$	0.01	LHCb	
$S_{B_d \rightarrow \phi K}$		$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb	
$S_{B_s \rightarrow \phi \phi}$		0.036	$\lesssim 0.05$	_	0.05	LHCb	
$S_{B_d \to K^* \gamma}$		${\rm few} \times 0.01$	0.01	-0.16 ± 0.22	0.03	Super-B	
$S_{B_s \rightarrow \phi \gamma}$		${\rm few} \times 0.01$	0.01	_	0.05	LHCb	
$A_{\rm SL}^d$		$-5 imes 10^{-4}$	10-4	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	LHCb	
A_{SL}^{s}		2×10^{-5}	$< 10^{-5}$	$(1.6\pm 8.5)\times 10^{-3}$	10^{-3}	LHCb	
$A_{CP}(b \rightarrow$	$s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B	_
$\mathcal{B}(B \rightarrow \tau \nu$	2)	1×10^{-4}	$20\% \rightarrow 5\%_{Latt}$	$(1.73\pm 0.35)\times 10^{-4}$	5%	Super-B	
$\mathcal{B}(B \rightarrow \mu i$	ν)	4×10^{-7}	$20\% \rightarrow 5\%_{\text{Latt}}$	$< 1.3 \times 10^{-6}$	6%	Super-B	
$\mathcal{B}(B_s \to \mu$	ι+μ ⁻)	3×10^{-9}	$20\% \rightarrow 5\%_{Latt}$	$< 5 \times 10^{-8}$	10%	LHCb	
$\mathcal{B}(B_d \rightarrow \mu$	ι+μ-)	1×10^{-10}	$20\% \rightarrow 5\%_{Latt}$	$< 1.5 \times 10^{-8}$	[?]	LHCb	
$A_{\rm FB}(B \rightarrow$	$K^* \mu^+ \mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb	
$B \rightarrow K \nu \bar{\nu}$	2	4×10^{-6}	$20\% \to 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B	
$ q/p _{D-mi}$	xing	1	$< 10^{-3}$	$(0.86^{\pm 0.18}_{-0.15})$	0.03	Super-B	_
ϕ_D		0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B	
$\mathcal{B}(K^+ \to$	$\pi^+ \nu \bar{\nu}$)	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory	_
$\mathcal{B}(K_L \to \tau)$	$\pi^0 \nu \bar{\nu}$)	2.6×10^{-11}	10%	$< 2.6 \times 10^{-8}$	[?]	K factory	
$R^{(e/\mu)}(K$	$\rightarrow \pi \ell \nu$)	2.477×10^{-5}	0.04%	$(2.498\pm 0.014)\times 10^{-5}$	0.1%	K factory	
$\mathcal{B}(t \rightarrow cZ)$	$(, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	$<0.6\times10^{-2}$	$O(10^{-5})$	LHC (100 fb	-1)
$B(B \rightarrow X_{s}\gamma)$ $B(B \rightarrow X_{d}\gamma)$ $S(B \rightarrow \rho\gamma)$ $B(\tau \rightarrow \mu\gamma)$ $B(B^{+} \rightarrow D\tau)$ $B(B_{s} \rightarrow \gamma\gamma)$ $sin^{2}\theta_{uv} @$)) rv) Y(4 S)			0.	6% 20% 0.15 3 ·10 ⁻⁹ 3% 25 ·10 ⁻⁶ 3 ·10 ⁻⁴	Super-B Super-B Super-B Super-B Super-B Super-B Super-B	──)% U.L ab ^{_1})

HER LER

RF FUJI Area

ы С Ч

Design Concept of SuperKEKB

- Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.
 - Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (× 20)
 - Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (× 2)
 - Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \right) \frac{R_L}{R_y} \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power Re-use the KEKB tunnel.Re-use KEKB components

as much as possible.

Preserve the present cells in HER.

Replace dipole magnets in LER, re-using other main magnets in the LER arcs.

Nano-Beam SuperKEKB

Machine design parameters

parameters		KEKB		SuperKEKB		weita		
		LER	HER	LER	HER	unnts		
Beam energy	Eb	E _b 3.5 8		4	7	GeV		
Half crossing angle	φ	11		41.5		mrad		
Horizontal emittance	ε _x	18	24	3.2	4.6	nm		
Emittance ratio	К	0.88	0.66	0.37	0.40	%		
Beta functions at IP	β_{x}^{*}/β_{y}	1200/5.9		32/0.27	25/0.30	mm		
Beam currents	Ib	1.64	1.19	3.60	2.60	А		
beam-beam parameter	ද y	0.129	0.090	0.0881	0.0807			
Luminosity	L	2.1 x 10 ³⁴		2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹

• Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Installation of 100 new LER bending magnets done

After TiN coating

Plain view of e⁺ DR

Demands on the detector

Total cross section and trigger rates with $L = 8 \times 10^{35}$ cm⁻² s⁻¹ from various physics processes at Y(4S).

Physics process	Cross section (nb)		Rate (Hz)
Y (4S) →BB	1.2		960
Hadron production from continuum	2.8		2200
$\mu^+\mu^-$	0.8		640
$\tau^+\tau^-$	0.8		640
Bhabha (θlab>17°)	44		350 ^(a)
γγ (θlab> 17°)	2.4		19 ^(a)
2γ processes (θlab> 17°, pt > 0.1GeV/c)	~80		~ 15000
Total	~130	~2	0000

The requirements for the trigger system are:

- 1. high efficiency for hadronic events;
- 2. maximum average trigger rate of 30 kHz;
- 3. fixed latency of about 5 µs;
- 4. timing precision of less than 10 ns;
- 5. minimum two-event separation of 200 ns;
- 6. trigger configuration that is flexible and robust.

(a) rate is pre-scaled by a factor of 1/100

Belle II Detector (in comparison with Belle)

SuperKEKB/Belle II Interaction Region

Many new superconducting magnets at the IP; Belle detector currently aligned with LER will have to be *rotated*.

New vertex detector

Beam Pip DEPFET	er =	Belle II 10mm	Belle 15mm
	Layer 1	r = 14mm	
	Layer 2	r = 22mm	
DSSD			
	Layer 3	r = 38mm	20mm
	Layer 4	r = 80mm	43.5mm
	Layer 5	r = 104mm	70mm
	Layer 6	r = 135mm	88mm

20

layers

-20

z APVs (n-side)

z APVs (n-side) rphi APVs (p-side

z APVs (n-side)

rphi APVs (p-side)

rphi APVs (p-side

-10

0

10

Rectangular (122.8 x 38.4 mm², 160 / 50 um pitch)

Rectangular (122.8 x 57.6 mm², 240 / 75 um pitch)

20

30

[cm]

10

0

-30

Pixel Vertex Detector

longer lever arm

Improved momentum resolution and dE/dx $\sigma_{P_t}/P_t = 0.19P_t \oplus 0.30/\beta$ $\sigma_{P_t}/P_t = 0.11P_t \oplus 0.30/\beta$ new readout system dead time 1-2µs → 200ns

small cell smaller hit rate for each wire shorter maximum drift time

Aug. 31: The number of installed wires in main and conical part is 35331, corresponding to 68% of total 51456 wires.

Particle Identification in Belle II Cherenkov ring imaging with precise time

Aerogel RICH (endcap PID)

Clear Cherenkov image observed

Cherenkov angle distribution

6.6 $\sigma \pi/K$ at 4GeV/c !

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices -> Cherenkov images from individual layers overlap on the photon detector.

ECL (Electromagnetic Crystal Calorimeter)

- 1. Upgrade electronics to do waveform sampling & fitting
- Upgrade endcap crystal (baseline option: pure CsI + photomultipliers); upgrade will have to be staged.
 100 ShaperDSE

Modification of the electronics.

- Pipe-line readout with waveform analysis:
- *16 points within the signal are fitted by the signal function F(t): $F(t) = H \cdot f(t-t_0)$

✤Both amplitude (H) and time (t₀) are obtained by the on-line shape fit:

$$=\sum_{i=1}^{n}(A_i-F(t_i))S_{ij}(A_j-F(t_j))$$

100 ShaperDSP boards in hand, tested.

International Workshop on e+e- collisions from Phi to Psi 2013

l, j

KLM: K_L&Muon detector

RPC → Scintillator (Endcap) also inner 1,2, or 3 layers of Barrel(TBD)

LAYOUT

- One layer: 75 strips (4 cm width)/sector
- 5 segments 1 segment = 15strips
- Two orthogonal layer = superlayer
- **F&B endcap KLM:**
 - **Total area ~1400 m²**
 - **16800 strips (total ~30000)**
 - the longest strip 2.8 m; the shortest 0.6 m
- WLS fiber in each strip
 - Hamamatsu MPPC at one fiber end
- mirrored far fiber end

Endcap muon detecton is a limited by backgrounds. Er RPCs will not work at full luminosity and higher backgrounds. Inner barrel i *marginal.*

MPPC: Hamamatsu 1.3 × 1.3 mm 667 pixels (used in T2K Near Detector)

Belle II Collaboration

23 countries/regions, 94 institutions, >500 collaborators

SuperKEKB/Belle II schedule

→construction started in 2010! Ground breaking ceremony in November 2011

Commissioning in three phases: Phase 1: w/o final quads, w/o Belle II

- basic machine tuning low emittance beam tuning vacuum scrubbing At least one month at beam currents of $0.5 \sim 1A$. Damping ring commissioning Phase 2: with final quads and Belle II, but no VXD low beta* beam tuning small x-y coupling tuning collision tuning study beam background □ careful checks beam background before VXD installation Phase 3: with QCS and full Belle II physics run
 - Iuminosity increase

Conclusion

•Last decade demonstrated the fruitfulness and efficiency of the flavor "factory" approach in the particle physics.

•Huge amount of results was obtained at the B-factories, but many new questions were put and the large field of researches will be opened by the super B factories.

• It is clear that the super B factories will produce the information complementary to the LHC.

- •At present superKEKB/Belle II project is under construction
- We can wait for new exciting results in the next decade.

Hadron spectroscopy at B factories - examples

Potential of ISR: competition or complementarity?

Number of events of the vector meson production at 8000 fb⁻¹ (@Y(4s)

φ	1.5×10 ⁸
Ψ	2.3×10 ⁸
ψ (2S)	7.8×10 ⁷
ψ(3770)	9.7×10 ⁶
Y(1s)	1.3×10 ⁸
Y(2s)	1.2×10 ⁸
Y(3s)	2.4×10 ⁸

$$\frac{dl}{Ldm} = \frac{2\alpha m}{\pi s} \left\{ \frac{s+m^4}{s(s-m^2)} \left(\ln \frac{s}{m_e^2} - 1 \right) \right\}$$

	KEKB	VEPP- 2000	BEPC-II
Luminosity, cm ⁻² s ⁻¹	8·10 ³⁵	10 ³²	10 ³³
Integrated lum. (per 10 ⁷ s)	8000 fb ⁻¹	1 fb ⁻¹	10 fb ⁻¹
Integrated in the range [1-2] GeV	8 fb ⁻¹ (~0.8 @ θ>0.7)	1 fb ⁻¹	
Integrated in the range [2-3] GeV	20 fb ⁻¹ (~2 @ θ>0.7)		10 fb ⁻¹

Background event display

Neutrons: background hits in the muon and KL detection system (KLM) \rightarrow reduce the efficiency of muon and KL detection \rightarrow replace RPCs in the endcapts and 2 barrel layers.

DAQ Overview

- At full luminosity, the data rate is 600 MB/sec.
- A high performance DAQ system is being designed by KEK and IHEP Beijing

		Belle	Belle II				
				Global DAQ Design	* Timing dist. scheme is not included in this figure.		
Level 1 Trigger	Trigger rate (kHz)	0.3-0.5	20-30	~0.1M chan. ~500 COPPERs ~50 R/O PCs Gig tx Gig tx	~0.1M chan. ~500 COPPERs ~50 R/O PCs	~0.1M chan. ~500 COPPERs ~50 R/O PCs	HLT farms ~10 units of ~150 cores/unit
	Event size (kBytes)	40	300				
	Data rate (MB/s)	20	6000				
High	Reduction	1/2	1/10				
Level Trigger	Storage Bandwidth (MB/s)	20 34	600	Rocket IO over fiber R/O PC Near detector E-hut	RAIDs Control room		
12.09.2013							

A snapshot of the Belle II computing model

