Tau Charm flavor factory

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

International Workshop on e^+e^- collisions from phi to psi (PHIPSI13) Rome, September 9-12, 2013

Tau Charm flavor factory

- features and physics prospects
- more info in Workshop on Tau Charm at High Luminosity, La Biodola, 26-31 May 2013 https://agenda.infn.it/conferenceDisplay.py?confId=6193
- (this is a rough presentation, asked just few days before the conference)

Accelerator scheme superB inspired

- Energy tunable currently in the range E_{cm} = 2-4.8 GeV
- 2*10³⁵ cm⁻² s⁻¹ maximum peak luminosity at the τ/charm threshold and upper
- Low currents and crab waist solution for the interaction region
 - Low power consumption
- Polarization available on one beam (65-70%)
- A symmetric machine
- Compact dimensions (about 340 Meters for the rings)
- Only positrons damping ring
- Competitive luminosity also at lower energy (currently 2 GeV)

LNS team

G. Schillaci

M. Sedita

Accelerator study group

LNF team

- M. Biagini
- M. Boscolo
- A. Chiarucci
- A. Clozza
- A. Drago
- S. Guiducci
- C. Ligi
- G. Mazzitelli
- R. Ricci
- C. Sanelli
- M. Serio
- A. Stella
- S. Tomassini

ESRF & Pisa team

- P. Raimondi
- S. Liuzzo
- E. Paoloni

CabibboLab team

- S. Bini
- F. Cioeta
- D. Cittadino
- M. D'Agostino
- M. Del Franco
- A. Delle Piane
- E. Di Pasquale
- G. Frascadore
- S. Gazzana
- R. Gargana
- S. Incremona
- A. Michelotti
- L. Sabbatini

International Workshop on e^+e^- collisions from phi to psi (PHIPSI13), Rome, September 9-12, 2013

Tau charm middle 2013

\checkmark lattice design	DONE		
• beam-beam and crabbed waist (assumed similar to SuperB)			
✓ dynamic aperture	DONE		
 electron cloud 	IN PROGRESS		
 Touschek effect and beam-gas scattering DONE 			
 Interaction region 	IN PROGRESS		
• QD0	IN PROGRESS		
 Low emittance tuning, tolerances 	DONE		
 RF & Impedance 			
✓ Feedback	DONE		
✓ Injection	DONE		
✓ Site considerations	DONE		
\checkmark Polarization	DONE		
• Maakina availakility 2			

• Machine availability ?

Accelerator site

Physics case

- tau LFV (particularly $\tau \rightarrow \mu \gamma$) and CPV
- CPV in D^0 mixing and decay
- EW physics (sin θ_W at the J/ψ peak using polarized beams)
- search for dark forces
- radiative return measurements
- spectroscopy

CPV IN D MIXING

• D mixing is described by:

- **M**₁₂

- SM: long-distance dominated, not calculable (today, see lattice progress on ΔM_{k}) but real
- NP: short distance, calculable w. lattice

- Γ₁₂

SM: not calculable but real

$$-\Phi_{12}$$
=arg(Γ_{12}/M_{12})

• Im $M_{12} = -|M_{12}| \sin \Phi_{12}$ pure NP effect

Tau-Charm 2013 Elba

CPV IN D MIXING II

• Define $|D_{SL}| = p |D^0| \pm q |D^0|$ and $\delta = (1 - |q/p|^2)/$ $(1+|q/p|^2)$. All observables can be written in terms of $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ and δ , with

$$\sqrt{2}\,\Delta m = \operatorname{sign}(\cos\Phi_{12})\sqrt{4|M_{12}|^2 - |\Gamma_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2|\Gamma_{12}|^2\sin^2\Phi_{12}},$$

$$\sqrt{2}\,\Delta\Gamma = 2\sqrt{|\Gamma_{12}|^2 - 4|M_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2|\Gamma_{12}|^2\sin^2\Phi_{12}},$$

$$\delta = \frac{2|M_{12}||\Gamma_{12}|\sin\Phi_{12}}{(\Delta m)^2 + |\Gamma_{12}|^2},$$
(7)

- Notice that $\phi = \arg(q/p) = \arg(y + i\delta x) \arg\Gamma_{12}$
- $|q/p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP Ciuchini et al; Kagan & Sokoloff

Tau-Charm 2013 Elba

L. Silvestrini

CPV IN MIXING TODAY

• updating the UTfit average with latest LHCb data we obtain:

CPV IN MIXING TODAY II

• The corresponding results on fundamental parameters are

IMPLICATIONS FOR NP SCALE

• The upper bound on $|\text{Im } M_{12}|$ can be turned into a bound on the coefficients of the relevant effective Hamiltonian:

 $- H_{eff} = \sum_{i} (c_{i} / \Lambda^{2}) O_{i}^{6}$

• A lower bound of the NP scale Λ can be obtained for fixed couplings c_i , or an upper bound on the couplings c_i can be obtained for fixed NP scale Λ

Tau-Charm 2013 Elba

L. Silvestrini

D MIXING @ SYMMETRIC e+e-

• Time-integrated decays of quantumcorrelated D-anti D pairs, with Dbar decaying in a flavour-specific final state:

 $1 - r_{f} \cos(\delta_{f} + \phi) (1 + \eta_{c}) \gamma + r_{f} \sin(\delta_{f} + \phi) (1 + \eta_{c}) x + O(x^{2}, \gamma^{2}), \text{ with } r_{f} = \overline{A}_{f} / A_{f}, \delta_{f} \text{ strong phase}$

• At the $\psi(4040)$ produce DD* pairs, obtain $\eta_c=-1$ for D* $\rightarrow D\pi$ and $\eta_c=1$ for D* $\rightarrow D\gamma$, exploit

the linear terms for $\eta_c = 1$ to measure x, y, ϕ Bondar. Polyektov & Vorobjev

Tau-Charm 2013 Elba

L. Silvestrini

D MIXING CPV REACH

	Belle-II (50 ab-1)	LHCb upgr. (50 fb ⁻¹)	Tau-charm (9 ab-1)
x (10 ⁻⁴)	8	1.5	1.7
y (10 ⁻⁴)	4	1	1.7
q/p -1 (10 ⁻²)	5	1	0.5
φ (°)	2.6		0.5

- Belle-II does not include strong phases from BES-III or Tau-charm
- LHCb upgrade x, y & ϕ should be revised as measurement from $K_s \pi \pi$ should allow for CPV
- Tau-charm extrapolated from Bondar et al
- Only Tau-charm allows for sub-degree determination of $\arg(M_{12})$ and $\arg(\Gamma_{12})$

4

Tau mu gamma

Tau pairs production rates

at \sqrt{s} = 4.04 GeV σ_{ee->ττ} ≅ 3.4 nb at \sqrt{s} = 10.58 GeV σ_{ee->ττ} ≅ 1.0 nb

> Tau-Charm (L=2 x 10^{35} cm⁻²s⁻¹) \cong **7 x 10^{9}** $\tau \tau$ events per year BELLE II (L=8 x 10^{35} cm⁻²s⁻¹) \cong **8 x 10^{9}** $\tau \tau$ events per year [Snowmass year = 10^{7} s]

E_Y for ISR $\tau\tau\gamma$ background is lower than E_Y for $\tau \rightarrow \mu\gamma$ when the machine is operated at $\sqrt{s} = 4.2$ GeV

- BELLE-II [50ab⁻¹]: B($\tau \rightarrow \mu \gamma$) < 5 x 10⁻⁹, systematically limited - tau-charm: B($\tau \rightarrow \mu \gamma$) < 5 x 10⁻¹⁰, statistically limited

V.Druzhinin, La Biodola, May 2013 (need factor 30 suppression of pion to muon misidentification, achievable with TOF or FARICH)

Also CP violation in τ decays

- Number of tau events at tau-charm and belle-II is comparable
- Final states in CP-violating observables involve multi-h (K or pi) + neutrino. More studies are needed to make a sensible comparison between the efficiency of tau-charm and Belle-II on these modes
- Polarization increases the number/improves the sensitivity of CP-violating observables and provides a better control on systematics

Precision EW tests

Detector

- no fundamental technology advances are necessary
- general purpose, hermetic, fast detector needed, symmetric beams
- Iarge amount of expensive components can be re-used from BABAR
- new drift chamber (possibly with cluster-counting)
- a silicon vertex detector is not mandatory
- ♦ TOF
- fast front-end electronics
- studies on-going since May 2013

Tau charm Factory case (work in progress)

- Linac for 2.9 GeV e⁻ and 2.3 GeV e⁺;
- Linac Length around **200** m;
- Two **Symmetric** rings;
- Storage Ring Length -> 600 -> 362 -> 326 m.

Tau Charm flavor factory

Super-B -> Tau-Charm Cost

Super-B / t-Charm Cost (Length)

Operating cost

• Around 15Meuros/year

Tau charm spending profile (bare cost) (very preliminary)

Conclusions

- Iuminosity goal supported by consolidated studies profiting from work done for SuperB
- sound cost and planning estimates exist, working on contingency estimates
- accelerator costs match funding approved for SuperB
- discovery machine and powerful EW QCD laboratory
- on specific channels can challenge and overcome existing and planned facilities in the next decade